metadata
language:
- ar
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Small ar -team 1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs data
type: google/fleurs
config: ar_eg
split: None
args: 'config: ar_eg, split: test'
metrics:
- name: Wer
type: wer
value: 45.28601694915254
Whisper Small ar -team 1
This model is a fine-tuned version of openai/whisper-medium on the fleurs data dataset. It achieves the following results on the evaluation set:
- Loss: 0.9206
- Wer: 45.2860
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0001 | 76.92 | 1000 | 0.9206 | 45.2860 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2