File size: 10,058 Bytes
aac71c7
 
becb173
 
 
 
 
 
 
 
 
 
aac71c7
9de6a1b
becb173
20235f3
becb173
5a5e596
becb173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9de6a1b
20235f3
 
becb173
 
 
 
9de6a1b
becb173
 
 
 
 
 
 
 
 
 
 
 
 
 
7fdb5aa
becb173
7fdb5aa
becb173
 
 
 
 
2dc2d26
 
becb173
 
 
 
 
 
20235f3
becb173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: cc-by-nc-4.0
tags:
- prokbert
- bioinformatics
- genomics
- sequence embedding
- genomic language models
- nucleotide
- dna-sequence
- promoter-prediction
- phage
---
## ProkBERT-mini-c-phage Model

This finetuned model is specifically designed for promoter identification and is based on the [ProkBERT-mini-c model](https://huggingface.co/neuralbioinfo/prokbert-mini-long). 

For more details, refer to the [phage dataset description](https://huggingface.co/datasets/neuralbioinfo/phage-test-10k) used for training and evaluating this model.

### Example Usage

For practical examples on how to use this model, see the following Jupyter notebooks:

- [Training Notebook](https://colab.research.google.com/github/nbrg-ppcu/prokbert/blob/main/examples/Finetuning.ipynb): A guide to fine-tuning the ProkBERT-mini model for promoter identification tasks.
- [Evaluation Notebook](https://colab.research.google.com/github/nbrg-ppcu/prokbert/blob/main/examples/Inference.ipynb): Demonstrates how to evaluate the finetuned ProkBERT-mini-promoter model on test datasets.

### Model Application

The model was trained for binary classification to distinguish between pahge and non-phage (bacteria) sequences. The non-phage sequences were sampled form the phage's host genome randomly. 



## Simple Usage Example

The following example demonstrates how to use the ProkBERT-mini-promoter model for processing a DNA sequence:

```python
from prokbert.prokbert_tokenizer import ProkBERTTokenizer
from transformers import MegatronBertForSequenceClassification
finetuned_model = "neuralbioinfo/prokbert-mini-c-phage"
kmer = 1
shift= 1

tok_params = {'kmer' : kmer,
             'shift' : shift}
tokenizer = ProkBERTTokenizer(tokenization_params=tok_params)
model = MegatronBertForSequenceClassification.from_pretrained(finetuned_model)
sequence = 'CACCGCATGGAGATCGGCACCTACTTCGACAAGCTGGAGGCGCTGCTGAAGGAGTGGTACGAGGCGCGCGGGGGTGAGGCATGACGGACTGGCAAGAGGAGCAGCGTCAGCGC'
inputs = tokenizer(sequence, return_tensors="pt")
# Ensure that inputs have a batch dimension
inputs = {key: value.unsqueeze(0) for key, value in inputs.items()}
# Generate outputs from the model
outputs = model(**inputs)
print(outputs)
``` 

### Model Details

**Developed by:** Neural Bioinformatics Research Group

**Architecture:** 
MegatronBertForSequenceClassification

**Tokenizer:** The model uses a character based tokenizer with a shift of 1 (k1s1), specifically designed to handle DNA sequences efficiently.

**Parameters:**

| Parameter            | Description                          |
|----------------------|--------------------------------------|
| Model Size           | 24.9 million parameters              |
| Max. Context Size    | 1022 bp                              |
| Training Data        | 206.65 billion nucleotides           |
| Layers               | 6                                    |
| Attention Heads      | 6                                    |

### Intended Use

**Intended Use Cases:** ProkBERT-mini-c-phage is intended for bioinformatics researchers and practitioners focusing on genomic sequence analysis, including:
- sequence classification tasks
- Exploration of genomic patterns and features


### Installation of ProkBERT (if needed)

For setting up ProkBERT in your environment, you can install it using the following command (if not already installed):

```python
try:
    import prokbert
    print("ProkBERT is already installed.")
except ImportError:
    !pip install prokbert
    print("Installed ProkBERT.")
```


### Evaluation on phage recognition benchmark dataset

| method        |    L |   auc_class1 |      acc |       f1 |      mcc |   recall |   sensitivity |   specificity |   tn |   fp |   fn |   tp |    Np |    Nn |   eval_time |
|:--------------|-----:|-------------:|---------:|---------:|---------:|---------:|--------------:|--------------:|-----:|-----:|-----:|-----:|------:|------:|------------:|
| DeepVirFinder |  256 |     0.734914 | 0.627163 | 0.481213 | 0.309049 | 0.345317 |      0.345317 |      0.909856 | 4542 |  450 | 3278 | 1729 |  5007 |  4992 |  7580       |
| DeepVirFinder |  512 |     0.791423 | 0.708    | 0.637717 | 0.443065 | 0.521192 |      0.521192 |      0.889722 | 4510 |  559 | 2361 | 2570 |  4931 |  5069 |  2637       |
| DeepVirFinder | 1024 |     0.826255 | 0.7424   | 0.702678 | 0.505333 | 0.605651 |      0.605651 |      0.880579 | 4380 |  594 | 1982 | 3044 |  5026 |  4974 |  1294       |
| DeepVirFinder | 2048 |     0.853098 | 0.7717   | 0.743339 | 0.557177 | 0.6612   |      0.6612   |      0.8822   | 4411 |  589 | 1694 | 3306 |  5000 |  5000 |  1351       |
| INHERIT       |  256 |     0.75982  | 0.6943   | 0.67012  | 0.393179 | 0.620008 |      0.620008 |      0.76883  | 3838 | 1154 | 1903 | 3105 |  5008 |  4992 |  2131       |
| INHERIT       |  512 |     0.816326 | 0.7228   | 0.651408 | 0.479323 | 0.525248 |      0.525248 |      0.914973 | 4638 |  431 | 2341 | 2590 |  4931 |  5069 |  2920       |
| INHERIT       | 1024 |     0.846547 | 0.7264   | 0.659447 | 0.495935 | 0.527059 |      0.527059 |      0.927825 | 4615 |  359 | 2377 | 2649 |  5026 |  4974 |  3055       |
| INHERIT       | 2048 |     0.864122 | 0.7365   | 0.668595 | 0.518541 | 0.5316   |      0.5316   |      0.9414   | 4707 |  293 | 2342 | 2658 |  5000 |  5000 |  3225       |
| MINI          |  256 |     0.846745 | 0.7755   | 0.766462 | 0.552855 | 0.735623 |      0.735623 |      0.815505 | 4071 |  921 | 1324 | 3684 |  5008 |  4992 |     6.68888 |
| MINI          |  512 |     0.924973 | 0.8657   | 0.859121 | 0.732696 | 0.83046  |      0.83046  |      0.89998  | 4562 |  507 |  836 | 4095 |  4931 |  5069 |    16.3681  |
| MINI          | 1024 |     0.956432 | 0.9138   | 0.911189 | 0.829645 | 0.879825 |      0.879825 |      0.94813  | 4716 |  258 |  604 | 4422 |  5026 |  4974 |    51.3319  |
| MINI-C        |  256 |     0.827635 | 0.7512   | 0.7207   | 0.51538  | 0.640974 |      0.640974 |      0.861779 | 4302 |  690 | 1798 | 3210 |  5008 |  4992 |     7.33697 |
| MINI-C        |  512 |     0.913378 | 0.8466   | 0.834876 | 0.69725  | 0.786453 |      0.786453 |      0.905109 | 4588 |  481 | 1053 | 3878 |  4931 |  5069 |    17.6749  |
| MINI-C        | 1024 |     0.94644  | 0.8937   | 0.891564 | 0.788427 | 0.869479 |      0.869479 |      0.918175 | 4567 |  407 |  656 | 4370 |  5026 |  4974 |    54.204   |
| MINI-LONG     |  256 |     0.777697 | 0.71495  | 0.686224 | 0.437727 | 0.622404 |      0.622404 |      0.807792 | 8065 | 1919 | 3782 | 6234 | 10016 |  9984 |     6.10304 |
| MINI-LONG     |  512 |     0.880831 | 0.81405  | 0.798001 | 0.632855 | 0.744879 |      0.744879 |      0.881338 | 8935 | 1203 | 2516 | 7346 |  9862 | 10138 |    12.1307  |
| MINI-LONG     | 1024 |     0.9413   | 0.88925  | 0.884917 | 0.781465 | 0.847195 |      0.847195 |      0.931745 | 9269 |  679 | 1536 | 8516 | 10052 |  9948 |    30.5088  |
| MINI-LONG     | 2048 |     0.964551 | 0.929    | 0.927455 | 0.85878  | 0.9077   |      0.9077   |      0.9503   | 9503 |  497 |  923 | 9077 | 10000 | 10000 |    94.404   |
| Virsorter2    |  512 |     0.620782 | 0.6259   | 0.394954 | 0.364831 | 0.247617 |      0.247617 |      0.993884 | 5038 |   31 | 3710 | 1221 |  4931 |  5069 |  2057       |
| Virsorter2    | 1024 |     0.719898 | 0.7178   | 0.621919 | 0.51036  | 0.461799 |      0.461799 |      0.976478 | 4857 |  117 | 2705 | 2321 |  5026 |  4974 |  3258       |
| Virsorter2    | 2048 |     0.816142 | 0.8103   | 0.778724 | 0.647532 | 0.6676   |      0.6676   |      0.953    | 4765 |  235 | 1662 | 3338 |  5000 |  5000 |  5737       |


### Column Descriptions

- **method**: The algorithm or method used for prediction (e.g., DeepVirFinder, INHERIT).
- **L**: Length of the genomic segment.
- **auc_class1**: Area under the ROC curve for class 1, indicating the model's ability to distinguish between classes.
- **acc**: Accuracy of the prediction, representing the proportion of true results (both true positives and true negatives) among the total number of cases examined.
- **f1**: The F1 score, a measure of a test's accuracy that considers both the precision and the recall.
- **mcc**: Matthews correlation coefficient, a quality measure for binary (two-class) classifications.
- **recall**: The recall, or true positive rate, measures the proportion of actual positives that are correctly identified.
- **sensitivity**: Sensitivity or true positive rate; identical to recall.
- **specificity**: The specificity, or true negative rate, measures the proportion of actual negatives that are correctly identified.
- **fp**: The number of false positives, indicating how many negative class samples were incorrectly identified as positive.
- **tp**: The number of true positives, indicating how many positive class samples were correctly identified.
- **eval_time**: The time taken to evaluate the model or method, usually in seconds.


### Ethical Considerations and Limitations

 Testing and evaluation have been conducted within specific genomic contexts, and the model's outputs in other scenarios are not guaranteed. Users should exercise caution and perform additional testing as necessary for their specific use cases.

### Reporting Issues

Please report any issues with the model or its outputs to the Neural Bioinformatics Research Group through the following means:

- **Model issues:** [GitHub repository link](https://github.com/nbrg-ppcu/prokbert)
- **Feedback and inquiries:** [[email protected]](mailto:[email protected])

## Reference
If you use ProkBERT in your research, please cite the following paper:


```
@ARTICLE{10.3389/fmicb.2023.1331233,
    AUTHOR={Ligeti, Balázs and Szepesi-Nagy, István and Bodnár, Babett and Ligeti-Nagy, Noémi and Juhász, János},
    TITLE={ProkBERT family: genomic language models for microbiome applications},
    JOURNAL={Frontiers in Microbiology},
    VOLUME={14},
    YEAR={2024},
    URL={https://www.frontiersin.org/articles/10.3389/fmicb.2023.1331233},
    DOI={10.3389/fmicb.2023.1331233},
    ISSN={1664-302X},
    ABSTRACT={...}
}
```