metadata
base_model: HuggingFaceH4/zephyr-7b-beta
inference: true
model_type: mistral
quantized_by: robertgshaw2
tags:
- nm-vllm
- marlin
- int4
zephyr-7b-beta-marlin
This repo contains model files for zephyr-7b-beta optimized for nm-vllm, a high-throughput serving engine for compressed LLMs.
This model was quantized with GPTQ and saved in the Marlin format for efficient 4-bit inference. Marlin is a highly optimized inference kernel for 4 bit models.
Inference
Install nm-vllm for fast inference and low memory-usage:
pip install nm-vllm[sparse]
Run in a Python pipeline for local inference:
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
model_id = "neuralmagic/zephyr-7b-beta-marlin"
model = LLM(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "What is quantization in maching learning?"},
]
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
sampling_params = SamplingParams(max_tokens=200)
outputs = model.generate(formatted_prompt, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
"""
Sure! Here's a simple recipe for banana bread:
Ingredients:
- 3-4 ripe bananas,mashed
- 1 large egg
- 2 Tbsp. Flour
- 2 tsp. Baking powder
- 1 tsp. Baking soda
- 1/2 tsp. Ground cinnamon
- 1/4 tsp. Salt
- 1/2 cup butter, melted
- 3 Cups All-purpose flour
- 1/2 tsp. Ground cinnamon
Instructions:
1. Preheat your oven to 350 F (175 C).
"""
Quantization
For details on how this model was quantized and converted to marlin format, run the quantization/apply_gptq_save_marlin.py
script:
pip install -r quantization/requirements.txt
python3 quantization/apply_gptq_save_marlin.py --model-id HuggingFaceH4/zephyr-7b-beta --save-dir ./zephyr-marlin
Slack
For further support, and discussions on these models and AI in general, join Neural Magic's Slack Community