neuronbit's picture
End of training
4ede8d5 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: voice-clone-large-finetune-final
    results: []

Visualize in Weights & Biases

voice-clone-large-finetune-final

This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4377
  • Wer: 15.3572

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1607 0.8460 250 0.5163 25.9413
0.0598 1.6920 500 0.4849 24.8444
0.0257 2.5381 750 0.4450 30.4180
0.0141 3.3841 1000 0.4369 19.3003
0.0029 4.2301 1250 0.4267 16.0095
0.0015 5.0761 1500 0.4209 18.4109
0.0063 5.9222 1750 0.4259 19.3300
0.0016 6.7682 2000 0.4341 17.7587
0.0009 7.6142 2250 0.4121 17.0471
0.0013 8.4602 2500 0.4199 16.3653
0.0009 9.3063 2750 0.4233 16.5135
0.001 10.1523 3000 0.4237 16.0688
0.0019 10.9983 3250 0.4230 16.4542
0.0014 11.8443 3500 0.4292 15.8316
0.0007 12.6904 3750 0.4291 15.8316
0.0005 13.5364 4000 0.4321 15.3869
0.0009 14.3824 4250 0.4334 15.2980
0.001 15.2284 4500 0.4344 15.2980
0.0 16.0745 4750 0.4372 15.3572
0.0 16.9205 5000 0.4377 15.3572

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3