SOLAR-10.7B-Instruct-ties
SOLAR-10.7B-Instruct-ties is a merge of the following models using mergekit:
𧩠Configuration
models:
- model: upstage/SOLAR-10.7B-Instruct-v1.0
# no parameters necessary for base model
- model: kodonho/Solar-OrcaDPO-Solar-Instruct-SLERP
parameters:
density: 0.5
weight: 0.5
- model: VAGOsolutions/SauerkrautLM-SOLAR-Instruct
parameters:
density: 0.5
weight: 0.3
merge_method: ties
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
parameters:
normalize: true
dtype: float16
π» Example Python Code
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "nfaheem/SOLAR-10.7B-Instruct-ties"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Write a story about llamas"
system_message = "You are a story writing assistant"
prompt_template=f'''{prompt}
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
π Summary Eval:
Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|
74.24 | 70.9 | 88.58 | 66.34 | 71.88 | 83.5 | 64.06 |
π Huggingface Leaderboard
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.