SOLAR-10.7B-Instruct-ties

SOLAR-10.7B-Instruct-ties is a merge of the following models using mergekit:

🧩 Configuration

models:
  - model: upstage/SOLAR-10.7B-Instruct-v1.0
    # no parameters necessary for base model
  - model: kodonho/Solar-OrcaDPO-Solar-Instruct-SLERP
    parameters:
      density: 0.5
      weight: 0.5
  - model: VAGOsolutions/SauerkrautLM-SOLAR-Instruct
    parameters:
      density: 0.5
      weight: 0.3
merge_method: ties
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
parameters:
  normalize: true
dtype: float16

πŸ’» Example Python Code

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "nfaheem/SOLAR-10.7B-Instruct-ties"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Write a story about llamas"
system_message = "You are a story writing assistant"
prompt_template=f'''{prompt}
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])

πŸ“‹ Summary Eval:

Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
74.24 70.9 88.58 66.34 71.88 83.5 64.06

πŸ“ˆ Huggingface Leaderboard

image/png

Downloads last month
12
Safetensors
Model size
10.7B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.