metadata
license: apache-2.0
datasets:
- ruanchaves/faquad-nli
language:
- pt
metrics:
- accuracy
library_name: transformers
pipeline_tag: text-classification
tags:
- textual-entailment
widget:
- text: Qual a capital do Brasil?<s>A capital do Brasil é Brasília!</>
example_title: Exemplo
- text: Qual a capital do Brasil?<s>Anões são muito mais legais do que elfos!</s>
example_title: Exemplo
TeenyTinyLlama-162m-FAQUAD
TeenyTinyLlama is a series of small foundational models trained on Portuguese.
This repository contains a version of TeenyTinyLlama-162m fine-tuned on the FaQuAD-NLI dataset.
Reproducing
# Faquad-nli
! pip install transformers datasets evaluate accelerate -q
import evaluate
import numpy as np
from datasets import load_dataset, Dataset, DatasetDict
from transformers import AutoTokenizer, DataCollatorWithPadding
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
# Load the task
dataset = load_dataset("ruanchaves/faquad-nli")
# Create a `ModelForSequenceClassification`
model = AutoModelForSequenceClassification.from_pretrained(
"nicholasKluge/TeenyTinyLlama-162m",
num_labels=2,
id2label={0: "UNSUITABLE", 1: "SUITABLE"},
label2id={"UNSUITABLE": 0, "SUITABLE": 1}
)
tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/TeenyTinyLlama-162m")
# Format the dataset
train = dataset['train'].to_pandas()
train['text'] = train['question'] + tokenizer.bos_token + train['answer'] + tokenizer.eos_token
train = train[['text', 'label']]
train.labels = train.label.astype(int)
train = Dataset.from_pandas(train)
test = dataset['test'].to_pandas()
test['text'] = test['question'] + tokenizer.bos_token + test['answer'] + tokenizer.eos_token
test = test[['text', 'label']]
test.labels = test.label.astype(int)
test = Dataset.from_pandas(test)
dataset = DatasetDict({
"train": train,
"test": test
})
# Preprocess the dataset
def preprocess_function(examples):
return tokenizer(examples["text"], truncation=True)
dataset_tokenized = dataset.map(preprocess_function, batched=True)
# Create a simple data collactor
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# Use accuracy as evaluation metric
accuracy = evaluate.load("accuracy")
# Function to compute accuracy
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return accuracy.compute(predictions=predictions, references=labels)
# Define training arguments
training_args = TrainingArguments(
output_dir="checkpoints",
learning_rate=4e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
evaluation_strategy="epochs",
save_strategy="epochs",
load_best_model_at_end=True,
push_to_hub=True,
hub_token="your_token_here",
hub_model_id="username/model-ID"
)
# Define the Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset_tokenized["train"],
eval_dataset=dataset_tokenized["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Train!
trainer.train()
Results
Models | FaQuAD-NLI |
---|---|
Teeny Tiny Llama 162m | 90.00 |
Bert-base-portuguese-cased | 93.07 |
Gpt2-small-portuguese | 86.46 |