roberta-mqa / README.md
nickrwu's picture
End of training
aafccb9 verified
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: roberta-mqa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-mqa
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4631
- Accuracy: 0.3793
- F1: 0.3774
- Precision: 0.3819
- Recall: 0.3760
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 28
- eval_batch_size: 28
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.5076 | 1.0 | 1061 | 1.4901 | 0.3372 | 0.3328 | 0.3366 | 0.3321 |
| 1.4244 | 2.0 | 2122 | 1.4584 | 0.3594 | 0.3560 | 0.3615 | 0.3545 |
| 1.3553 | 3.0 | 3183 | 1.4631 | 0.3793 | 0.3774 | 0.3819 | 0.3760 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1