|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Qra-7b-dolly-instruction-0.1 |
|
results: [] |
|
datasets: |
|
- s3nh/alpaca-dolly-instruction-only-polish |
|
language: |
|
- pl |
|
inference: true |
|
license: llama2 |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Qra-7b-dolly-instruction-0.1 |
|
|
|
This model if a fine-tuned version of [OPI-PG/Qra-7b](https://huggingface.co/OPI-PG/Qra-7b) on the [s3nh/alpaca-dolly-instruction-only-polish](https://huggingface.co/datasets/s3nh/alpaca-dolly-instruction-only-polish) dataset. |
|
|
|
## Model Description |
|
|
|
Trained from [OPI-PG/Qra-7b](https://huggingface.co/OPI-PG/Qra-7b) |
|
|
|
## Intended uses & limitations |
|
|
|
This model has been fine-tuned for question-answering task. It is possible to use it as a chat, but it doesn't work well because the dataset did not contain conversations. |
|
|
|
```py |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
|
|
model_id = "nie3e/Qra-7b-dolly-instruction-0.1" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
pipe = pipeline( |
|
"text-generation", model=model, tokenizer=tokenizer, device=device |
|
) |
|
|
|
def get_answer(system_prompt: str, user_prompt: str) -> str: |
|
input_msg = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": user_prompt} |
|
] |
|
prompt = pipe.tokenizer.apply_chat_template( |
|
input_msg, tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
outputs = pipe( |
|
prompt, max_new_tokens=512, do_sample=False, temperature=0.1, top_k=50, |
|
top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, |
|
pad_token_id=pipe.tokenizer.pad_token_id |
|
) |
|
return outputs[0]['generated_text'][len(prompt):].strip() |
|
|
|
print( |
|
get_answer( |
|
system_prompt="Jesteś przyjaznym chatbotem", |
|
user_prompt="Napisz czym jest dokument architectural decision record." |
|
) |
|
) |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
Dataset: [s3nh/alpaca-dolly-instruction-only-polish](https://huggingface.co/datasets/s3nh/alpaca-dolly-instruction-only-polish) |
|
|
|
Each row has been converted into conversation using this function: |
|
```py |
|
system_message = """Jesteś przyjaznym chatbotem""" |
|
|
|
def create_conversation(sample) -> dict: |
|
strip_characters = "\"'" |
|
return { |
|
"messages": [ |
|
{"role": "system", "content": system_message}, |
|
{"role": "user", |
|
"content": f"{sample['instruction'].strip(strip_characters)} " |
|
f"{sample['input'].strip(strip_characters)}"}, |
|
{"role": "assistant", |
|
"content": f"{sample['output'].strip(strip_characters)}"} |
|
] |
|
} |
|
``` |
|
|
|
Train/test split: 90%/10% |
|
|
|
## Training procedure |
|
|
|
GPU: 2x RTX 4060Ti 16GB |
|
Training time: ~13 hours |
|
|
|
Using `device_map="auto"` |
|
|
|
### Training hyperparameters |
|
|
|
Lora config: |
|
```py |
|
peft_config = LoraConfig( |
|
lora_alpha=128, |
|
lora_dropout=0.05, |
|
r=256, |
|
bias="none", |
|
target_modules="all-linear", |
|
task_type="CAUSAL_LM" |
|
) |
|
``` |
|
|
|
Training arguments: |
|
```py |
|
args = TrainingArguments( |
|
output_dir="Qra-7b-dolly-instruction-0.1", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=6, |
|
gradient_checkpointing=True, |
|
optim="adamw_torch_fused", |
|
logging_steps=10, |
|
save_strategy="epoch", |
|
learning_rate=2e-4, |
|
bf16=True, |
|
tf32=True, |
|
max_grad_norm=0.3, |
|
warmup_ratio=0.03, |
|
lr_scheduler_type="constant", |
|
push_to_hub=False, |
|
report_to=["tensorboard"], |
|
) |
|
``` |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.2 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |