imagebind-huge / README.md
nielsr's picture
nielsr HF staff
Update README.md
51fc1ff verified
|
raw
history blame
4.51 kB
metadata
tags:
  - pytorch_model_hub_mixin
  - model_hub_mixin
  - multimodal
license: cc-by-nc-sa-4.0

ImageBind: One Embedding Space To Bind Them All

FAIR, Meta AI

To appear at CVPR 2023 (Highlighted paper)

[Paper] [Blog] [Demo] [Supplementary Video] [BibTex]

PyTorch implementation and pretrained models for ImageBind. For details, see the paper: ImageBind: One Embedding Space To Bind Them All.

ImageBind learns a joint embedding across six different modalities - images, text, audio, depth, thermal, and IMU data. It enables novel emergent applications ‘out-of-the-box’ including cross-modal retrieval, composing modalities with arithmetic, cross-modal detection and generation.

ImageBind

ImageBind model

Emergent zero-shot classification performance.

Model IN1k K400 NYU-D ESC LLVIP Ego4D
imagebind_huge 77.7 50.0 54.0 66.9 63.4 25.0

Usage

First git clone the repository:

git clone -b feature/add_hf https://github.com/nielsrogge/ImageBind.git
cd ImageBind

Next, install pytorch 1.13+ and other 3rd party dependencies.

conda create --name imagebind python=3.8 -y
conda activate imagebind

pip install .

For windows users, you might need to install soundfile for reading/writing audio files. (Thanks @congyue1977)

pip install soundfile

Extract and compare features across modalities (e.g. Image, Text and Audio).

from imagebind import data
import torch
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType
from imagebind.models.imagebind_model import ImageBindModel

text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]

device = "cuda:0" if torch.cuda.is_available() else "cpu"

model = ImageBindModel.from_pretrained("nielsr/imagebind-huge")
model.eval()
model.to(device)

# Load data
inputs = {
    ModalityType.TEXT: data.load_and_transform_text(text_list, device),
    ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device),
    ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, device),
}

with torch.no_grad():
    embeddings = model(inputs)

print(
    "Vision x Text: ",
    torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1),
)
print(
    "Audio x Text: ",
    torch.softmax(embeddings[ModalityType.AUDIO] @ embeddings[ModalityType.TEXT].T, dim=-1),
)
print(
    "Vision x Audio: ",
    torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.AUDIO].T, dim=-1),
)

# Expected output:
#
# Vision x Text:
# tensor([[9.9761e-01, 2.3694e-03, 1.8612e-05],
#         [3.3836e-05, 9.9994e-01, 2.4118e-05],
#         [4.7997e-05, 1.3496e-02, 9.8646e-01]])
#
# Audio x Text:
# tensor([[1., 0., 0.],
#         [0., 1., 0.],
#         [0., 0., 1.]])
#
# Vision x Audio:
# tensor([[0.8070, 0.1088, 0.0842],
#         [0.1036, 0.7884, 0.1079],
#         [0.0018, 0.0022, 0.9960]])

License

ImageBind code and model weights are released under the CC-BY-NC 4.0 license. See LICENSE for additional details.

Citation

@inproceedings{girdhar2023imagebind,
  title={ImageBind: One Embedding Space To Bind Them All},
  author={Girdhar, Rohit and El-Nouby, Alaaeldin and Liu, Zhuang
and Singh, Mannat and Alwala, Kalyan Vasudev and Joulin, Armand and Misra, Ishan},
  booktitle={CVPR},
  year={2023}
}