Mistral-7B-Instruct-v0.2-advisegpt-v0.5

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0840
  • Bleu: {'bleu': 0.9537910015397628, 'precisions': [0.9763005593772222, 0.9591762297332277, 0.9471223357463351, 0.9370695448087227], 'brevity_penalty': 0.9989373668126428, 'length_ratio': 0.9989379310075293, 'translation_length': 1022387, 'reference_length': 1023474}
  • Rouge: {'rouge1': 0.9741038510844018, 'rouge2': 0.9550445541823809, 'rougeL': 0.9723656951648176, 'rougeLsum': 0.9736935611588988}
  • Exact Match: {'exact_match': 0.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 10
  • total_train_batch_size: 30
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Bleu Exact Match Validation Loss Rouge
0.069 0.9999 829 {'bleu': 0.9459206747141892, 'brevity_penalty': 0.998656611989374, 'length_ratio': 0.9986575135274565, 'precisions': [0.9726768417963018, 0.9521542081327253, 0.9380288226144853, 0.9265355643009697], 'reference_length': 1023474, 'translation_length': 1022100} {'exact_match': 0.0} 0.0990 {'rouge1': 0.9702189356306301, 'rouge2': 0.9472171244648081, 'rougeL': 0.9677029434775739, 'rougeLsum': 0.9695684693436178}
0.0501 1.9999 1658 {'bleu': 0.9537910015397628, 'brevity_penalty': 0.9989373668126428, 'length_ratio': 0.9989379310075293, 'precisions': [0.9763005593772222, 0.9591762297332277, 0.9471223357463351, 0.9370695448087227], 'reference_length': 1023474, 'translation_length': 1022387} {'exact_match': 0.0} 0.0840 {'rouge1': 0.9741105562035488, 'rouge2': 0.9550205654651982, 'rougeL': 0.9723363685950056, 'rougeLsum': 0.9737013621980013}
0.0479 2.9999 2487 0.0850 {'bleu': 0.9548514568958526, 'precisions': [0.9767648848122783, 0.9601353822381405, 0.9483682511725553, 0.9385079979703334], 'brevity_penalty': 0.9989676875356347, 'length_ratio': 0.9989682200036347, 'translation_length': 1022418, 'reference_length': 1023474} {'rouge1': 0.9746456572659052, 'rouge2': 0.9560608145101823, 'rougeL': 0.9729518327172596, 'rougeLsum': 0.9742472834405176} {'exact_match': 0.0}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ninyx/Mistral-7B-Instruct-v0.2-advisegpt-v0.5

Adapter
(894)
this model