korean_sentiment_analysis_kcelectra

This model is a fine-tuned version of beomi/KcELECTRA-base-v2022 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9718
  • Micro f1 score: 70.7183
  • Auprc: 68.4562
  • Accuracy: 0.7072

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Micro f1 score Auprc Accuracy
1.0543 1.0 391 0.9923 65.3061 49.6906 0.6531
0.8573 2.0 782 0.8229 69.9901 64.4071 0.6999
0.7217 3.0 1173 0.7961 71.0600 67.4640 0.7106
0.6305 4.0 1564 0.8163 71.1229 68.5191 0.7112
0.5294 5.0 1955 0.8205 71.0150 68.7334 0.7102
0.4689 6.0 2346 0.8716 71.1679 68.7751 0.7117
0.433 7.0 2737 0.9086 70.9880 68.3653 0.7099
0.419 8.0 3128 0.9290 70.6734 68.4606 0.7067
0.3766 9.0 3519 0.9619 70.6464 68.5132 0.7065
0.3395 10.0 3910 0.9718 70.7183 68.4562 0.7072

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.6.0
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
3,236
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.