|
--- |
|
base_model: |
|
- microsoft/Phi-3.5-vision-instruct |
|
--- |
|
|
|
## Eval |
|
|
|
``` |
|
vllm serve nm-testing/Phi-3.5-vision-instruct-W8A8-Dynamic-Per-Token --trust-remote-code --max-model-len 100000 |
|
``` |
|
|
|
``` |
|
python -m eval.run eval_vllm --model_name nm-testing/Phi-3.5-vision-instruct-W8A8-Dynamic-Per-Token --url http://0.0.0.0:8000 --output_dir output/ --eval_name "chartqa" |
|
... |
|
================================================================================ |
|
Metrics: |
|
{ |
|
"explicit_prompt_relaxed_correctness": 0.6472, |
|
"anywhere_in_answer_relaxed_correctness": 0.6616 |
|
} |
|
================================================================================ |
|
``` |
|
|
|
## Creation |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
# from llmcompressor.modifiers.smoothquant import SmoothQuantModifier |
|
from llmcompressor.transformers import oneshot, wrap_hf_model_class |
|
|
|
# Select model and load it. |
|
MODEL_ID = "microsoft/Phi-3.5-vision-instruct" |
|
model_class = wrap_hf_model_class(AutoModelForCausalLM) |
|
model = model_class.from_pretrained( |
|
MODEL_ID, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
_attn_implementation="eager", |
|
) |
|
processor = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
|
|
# Select calibration dataset. |
|
DATASET_ID = "HuggingFaceH4/ultrachat_200k" |
|
DATASET_SPLIT = "train_sft" |
|
|
|
# Select number of samples. 512 samples is a good place to start. |
|
# Increasing the number of samples can improve accuracy. |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
# Load dataset and preprocess. |
|
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) |
|
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) |
|
|
|
|
|
def preprocess(example): |
|
return { |
|
"text": processor.apply_chat_template( |
|
example["messages"], |
|
tokenize=False, |
|
) |
|
} |
|
|
|
|
|
ds = ds.map(preprocess) |
|
|
|
|
|
# Tokenize inputs. |
|
def tokenize(sample): |
|
return processor( |
|
sample["text"], |
|
padding=False, |
|
max_length=MAX_SEQUENCE_LENGTH, |
|
truncation=True, |
|
add_special_tokens=False, |
|
) |
|
|
|
|
|
ds = ds.map(tokenize, remove_columns=ds.column_names) |
|
print(ds) |
|
|
|
# Configure algorithms. In this case, we: |
|
# * apply SmoothQuant to make the activations easier to quantize |
|
# * quantize the weights to int8 with GPTQ (static per channel) |
|
# * quantize the activations to int8 (dynamic per token) |
|
# Note: set sequential_update: true in the recipe to reduce memory |
|
ignore=["re:.*lm_head", "re:model.vision_embed_tokens.*"] |
|
recipe = [ |
|
# SmoothQuantModifier(smoothing_strength=0.8, ignore=ignore), |
|
GPTQModifier(targets="Linear", scheme="W8A8", ignore=ignore), |
|
] |
|
|
|
# Apply algorithms. |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
trust_remote_code_model=True, |
|
) |
|
|
|
# Confirm generations of the quantized model look sane. |
|
print("\n\n") |
|
print("========== SAMPLE GENERATION ==============") |
|
input_ids = processor("Hello my name is", return_tensors="pt").input_ids.to("cuda") |
|
output = model.generate(input_ids, max_new_tokens=100) |
|
print(processor.decode(output[0])) |
|
print("==========================================\n\n") |
|
|
|
# Save to disk compressed. |
|
SAVE_DIR = MODEL_ID.split("/")[1] + "-W8A8-Dynamic-Per-Token" |
|
model.save_pretrained(SAVE_DIR, save_compressed=True) |
|
processor.save_pretrained(SAVE_DIR) |
|
``` |