Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

Whisper Small ko

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the custom dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.7511 0.0641 10 1.4828
0.6562 0.1282 20 1.2493
0.3357 0.1923 30 0.8826
0.1966 0.2564 40 0.7550
0.1566 0.3205 50 0.6223
0.1253 0.3846 60 0.5636
0.104 0.4487 70 0.5163
0.0979 0.5128 80 0.4967
0.0913 0.5769 90 0.4598
0.107 0.6410 100 0.4358
0.1104 0.7051 110 0.4337
0.0819 0.7692 120 0.4072
0.0892 0.8333 130 0.3902
0.0954 0.8974 140 0.3555
0.0789 0.9615 150 0.3516
0.0811 1.0256 160 0.3237
0.0822 1.0897 170 0.2995
0.0747 1.1538 180 0.3195
0.0838 1.2179 190 0.3436
0.0587 1.2821 200 0.3178
0.0675 1.3462 210 0.2981
0.062 1.4103 220 0.2745
0.0662 1.4744 230 0.2650
0.0639 1.5385 240 0.2802
0.0745 1.6026 250 0.3079
0.0632 1.6667 260 0.2631
0.0724 1.7308 270 0.2406
0.0728 1.7949 280 0.2496
0.0601 1.8590 290 0.2328
0.0653 1.9231 300 0.2230
0.0668 1.9872 310 0.2076
0.0606 2.0513 320 0.1849
0.0543 2.1154 330 0.1851
0.0493 2.1795 340 0.1697
0.047 2.2436 350 0.1630
0.0451 2.3077 360 0.1647
0.0403 2.3718 370 0.1634
0.0477 2.4359 380 0.1530
0.0491 2.5 390 0.1517
0.0444 2.5641 400 0.1464
0.0399 2.6282 410 0.1421
0.0622 2.6923 420 0.1690
0.0509 2.7564 430 0.1800
0.0447 2.8205 440 0.1773
0.0496 2.8846 450 0.1765
0.049 2.9487 460 0.1721
0.0388 3.0128 470 0.1666
0.0667 3.0769 480 0.1477
0.038 3.1410 490 0.1378
0.0363 3.2051 500 0.1376
0.0264 3.2692 510 0.1289
0.032 3.3333 520 0.1339
0.0324 3.3974 530 0.1226
0.034 3.4615 540 0.1196
0.0257 3.5256 550 0.1092
0.0355 3.5897 560 0.1054
0.0256 3.6538 570 0.1096
0.033 3.7179 580 0.1063
0.0337 3.7821 590 0.1121
0.0324 3.8462 600 0.1065
0.0327 3.9103 610 0.1075
0.0314 3.9744 620 0.1042
0.0407 4.0385 630 0.0929
0.0185 4.1026 640 0.1295
0.0215 4.1667 650 0.1258
0.0198 4.2308 660 0.1269
0.0204 4.2949 670 0.1243
0.019 4.3590 680 0.1252
0.0236 4.4231 690 0.1229
0.0263 4.4872 700 0.1196
0.0232 4.5513 710 0.1184
0.0189 4.6154 720 0.1171
0.0187 4.6795 730 0.1155
0.0199 4.7436 740 0.1114
0.026 4.8077 750 0.1105
0.0193 4.8718 760 0.1112
0.0174 4.9359 770 0.1116
0.0205 5.0 780 0.1117
0.0132 5.0641 790 0.1101
0.0125 5.1282 800 0.1100
0.0142 5.1923 810 0.1098
0.0555 5.2564 820 0.0805
0.0138 5.3205 830 0.0787
0.0193 5.3846 840 0.0748
0.0141 5.4487 850 0.0731
0.0158 5.5128 860 0.0724
0.0133 5.5769 870 0.0722
0.0166 5.6410 880 0.0716
0.0125 5.7051 890 0.0706
0.0133 5.7692 900 0.0701
0.0209 5.8333 910 0.0700
0.0144 5.8974 920 0.0696
0.0111 5.9615 930 0.0697
0.0109 6.0256 940 0.0691
0.0131 6.0897 950 0.0688
0.0174 6.1538 960 0.0685
0.0094 6.2179 970 0.0684
0.0128 6.2821 980 0.0682
0.011 6.3462 990 0.0681
0.0112 6.4103 1000 0.0681

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for nomnoos37/stt-turbo-1227-v1.1-peft-eng-1k-1e-3-rank64-reduced

Adapter
(46)
this model