vegetarian-mayo / README.md
nroggendorff's picture
Update README.md
c979c0c verified
|
raw
history blame
1.75 kB
metadata
language:
  - en
license: mit
tags:
  - trl
  - sft
  - sgd
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
datasets:
  - nroggendorff/mayo
model-index:
  - name: mayo
    results: []

Mayonnaise LLM

Mayo is a language model fine-tuned on the Mayo dataset using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques. It is based on the TinyLlama Model

Features

  • Utilizes SFT and TRL techniques for improved performance
  • Supports English language

Usage

To use the Mayo LLM, you can load the model using the Hugging Face Transformers library:

from transformers import pipeline

pipe = pipeline("text-generation", model="nroggendorff/vegetarian-mayo")

question = "What color is the sky?"
conv = [{"role": "user", "content": question}]

response = pipe(conv, max_new_tokens=32)[0]['generated_text'][-1]['content']
print(response)

To use the model with quantization:

from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model_id = "nroggendorff/vegetarian-mayo"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)

prompt = "[INST] What color is the sky? [/INST]"
inputs = tokenizer(prompt, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=32)

generated_text = tokenizer.batch_decode(outputs)[0]
print(generated_text)

License

This project is licensed under the MIT License.