Text2Text Generation
NeMo
PyTorch
English
causal-lm
File size: 4,366 Bytes
bb3cc84
baefef7
 
 
 
 
 
 
 
 
bb3cc84
baefef7
bb3cc84
743e893
baefef7
 
 
 
 
 
 
f9997e2
baefef7
 
 
 
d1b529c
baefef7
 
 
9a37149
baefef7
 
9a37149
 
baefef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a37149
 
 
 
 
 
 
 
 
 
 
96ac9a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a37149
baefef7
 
d1b529c
baefef7
 
 
d1b529c
baefef7
 
 
d1b529c
baefef7
2d335ea
 
 
 
baefef7
 
 
 
 
 
 
 
d1b529c
 
baefef7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
language:
- en
library_name: nemo
datasets:
- the_pile
tags:
- text generation
- pytorch
- causal-lm
license: cc-by-4.0

---
# NeMo Megatron-GPT 1.3B

<style>
img {
 display: inline;
}
</style>

|[![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-1.3B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)


## Model Description

Megatron-GPT 1.3B is a transformer-based language model. GPT refers to a class of transformer decoder-only models similar to GPT-2 and 3 while 1.3B refers to the total trainable parameter count (1.3 Billion) [1, 2]. It has Tensor Parallelism (TP) of 1, Pipeline Parallelism (PP) of 1 and should fit on a single NVIDIA GPU.

This model was trained with [NeMo Megatron](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html).


## Getting started

### Step 1: Install NeMo and dependencies

You will need to install NVIDIA Apex and NeMo. 

```
git clone https://github.com/ericharper/apex.git
cd apex
git checkout nm_v1.11.0
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./
```

```
pip install nemo_toolkit['nlp']==1.11.0
``` 

Alternatively, you can use NeMo Megatron training docker container with all dependencies pre-installed.

### Step 2: Launch eval server 

**Note.** The model has been trained with Tensor Parallelism (TP) of 1 and Pipeline Parallelism (PP) of 1 and should fit on a single NVIDIA GPU.

```
git clone https://github.com/NVIDIA/NeMo.git 
cd NeMo/examples/nlp/language_modeling
git checkout v1.11.0
python megatron_gpt_eval.py gpt_model_file=nemo_gpt5B_fp16.nemo server=True tensor_model_parallel_size=1 trainer.devices=1
```

### Step 3: Send prompts to you model!
```python
import json
import requests

port_num = 5555
headers = {"Content-Type": "application/json"}

def request_data(data):
    resp = requests.put('http://localhost:{}/generate'.format(port_num),
                        data=json.dumps(data),
                        headers=headers)
    sentences = resp.json()['sentences']
    return sentences


data = {
    "sentences": ["Tell me an interesting fact about space travel."]*1,
    "tokens_to_generate": 50,
    "temperature": 1.0,
    "add_BOS": True,
    "top_k": 0,
    "top_p": 0.9,
    "greedy": False,
    "all_probs": False,
    "repetition_penalty": 1.2,
    "min_tokens_to_generate": 2,
}

sentences = request_data(data)
print(sentences)
```


## Training Data

The model was trained on ["The Piles" dataset prepared by Eleuther.AI](https://pile.eleuther.ai/). [4]

## Evaluation results

*Zero-shot performance.* Evaluated using [LM Evaluation Test Suite from AI21](https://github.com/AI21Labs/lm-evaluation)

| ARC-Challenge	| ARC-Easy | RACE-middle | RACE-high | Winogrande | RTE | BoolQA | HellaSwag | PiQA |
| ------------- | -------- | ----------- | --------- | ---------- | --- | ------ | --------- | ---- |
| 0.3012        | 0.4596  | 0.459       | 0.3797    | 0.5343     | 0.5451 | 0.5979 | 0.4443 | 0.6834 | 

## Limitations

The model was trained on the data originally crawled from the Internet. This data contains toxic language and societal biases. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts.   

## References

[1] [Improving Language Understanding by Generative Pre-Training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)

[2] [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf)

[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)

[4] [The Pile: An 800GB Dataset of Diverse Text for Language Modeling](https://arxiv.org/abs/2101.00027)

## Licence

License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.