language:
- de
library_name: nemo
datasets:
- multilingual_librispeech
- mozilla-foundation/common_voice_12_0
- VoxPopuli-(DE)
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- Transducer
- FastConformer
- CTC
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
license: cc-by-4.0
model-index:
- name: stt_de_fastconformer_hybrid_large_pc
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common-voice-12-0
type: mozilla-foundation/common_voice_12_0
config: de
split: test
args:
language: de
metrics:
- name: Test WER
type: wer
value: 4.93
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Multilingual LibriSpeech
type: facebook/multilingual_librispeech
config: german
split: test
args:
language: de
metrics:
- name: Test WER
type: wer
value: 3.8
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Vox Populi
type: polinaeterna/voxpopuli
config: german
split: test
args:
language: de
metrics:
- name: Test WER
type: wer
value: 8.6
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common-voice-12-0
type: mozilla-foundation/common_voice_12_0
config: German P&C
split: test
args:
language: de
metrics:
- name: Test WER P&C
type: wer
value: 5.39
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Multilingual LibriSpeech
type: facebook/multilingual_librispeech
config: German P&C
split: test
args:
language: de
metrics:
- name: Test WER P&C
type: wer
value: 11.1
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Vox Populi
type: polinaeterna/voxpopuli
config: German P&C
split: test
args:
language: de
metrics:
- name: Test WER P&C
type: wer
value: 10.41
NVIDIA FastConformer-Hybrid Large (de)
This model transcribes speech in upper and lower case German alphabet along with spaces, periods, commas, and question marks. It is a "large" version of FastConformer Transducer-CTC (around 115M parameters) model. This is a hybrid model trained on two losses: Transducer (default) and CTC. See the model architecture section and NeMo documentation for complete architecture details.
NVIDIA NeMo: Training
To train, fine-tune or play with the model you will need to install NVIDIA NeMo. We recommend you install it after you've installed latest Pytorch version.
pip install nemo_toolkit['all']
How to Use this Model
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
Automatically instantiate the model
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(model_name="nvidia/stt_de_fastconformer_hybrid_large_pc")
Transcribing using Python
First, let's get a sample
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
Then simply do:
asr_model.transcribe(['2086-149220-0033.wav'])
Transcribing many audio files
Using Transducer mode inference:
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
pretrained_name="nvidia/stt_de_fastconformer_hybrid_large_pc"
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
Using CTC mode inference:
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
pretrained_name="nvidia/stt_de_fastconformer_hybrid_large_pc"
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
decoder_type="ctc"
Input
This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
Output
This model provides transcribed speech as a string for a given audio sample.
Model Architecture
FastConformer is an optimized version of the Conformer model [1] with 8x depthwise-separable convolutional downsampling. The model is trained in a multitask setup with joint Transducer and CTC decoder loss. You may find more information on the details of FastConformer here: Fast-Conformer Model and about Hybrid Transducer-CTC training here: Hybrid Transducer-CTC.
Training
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this example script and this base config.
The tokenizers for these models were built using the text transcripts of the train set with this script.
Datasets
All the models in this collection are trained on a composite dataset (NeMo PnC ASRSET) comprising of 2500 hours of German speech:
- MCV12 (800 hrs)
- MLS (1500 hrs)
- Voxpopuli (200 hrs)
Performance
The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general.
The following tables summarizes the performance of the available models in this collection with the Transducer decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
a) On data without Punctuation and Capitalization with Transducer decoder
Version | Tokenizer | Vocabulary Size | MCV12 DEV | MCV12 TEST | MLS DEV | MLS TEST | VOXPOPULI DEV | VOXPOPULI TEST |
---|---|---|---|---|---|---|---|---|
1.18.0 | SentencePiece Unigram | 1024 | 4.18 | 4.93 | 3.3 | 3.8 | 10.8 | 8.6 |
b) On data with Punctuation and Capitalization with Transducer decoder
Version | Tokenizer | Vocabulary Size | MCV12 DEV | MCV12 TEST | MLS DEV | MLS TEST | VOXPOPULI DEV | VOXPOPULI TEST |
---|---|---|---|---|---|---|---|---|
1.18.0 | SentencePiece Unigram | 1024 | 4.66 | 5.39 | 10.12 | 11.1 | 12.96 | 10.41 |
Limitations
Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. The model only outputs the punctuations: '.', ',', '?'
and hence might not do well in scenarios where other punctuations are also expected.
NVIDIA Riva: Deployment
NVIDIA Riva, is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded. Additionally, Riva provides:
- World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
- Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
- Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
Although this model isn’t supported yet by Riva, the list of supported models is here.
Check out Riva live demo.
References
[1] Conformer: Convolution-augmented Transformer for Speech Recognition
[2] Google Sentencepiece Tokenizer
Licence
License to use this model is covered by the CC-BY-4.0. By downloading the public and release version of the model, you accept the terms and conditions of the CC-BY-4.0 license.