Seems like metadata is not in the safetensor file

#1
by isaacchung - opened

Might be similar to https://huggingface.co/SeaLLMs/SeaLLM-7B-Hybrid/discussions/2.
Running the following yields an error:

# Load model directly
from transformers import AutoModel
model = AutoModel.from_pretrained("nyu-visionx/moco-v3-vit-b")

Error:

Cell In[1], line 3
      1 # Load model directly
      2 from transformers import AutoModel
----> 3 model = AutoModel.from_pretrained("nyu-visionx/moco-v3-vit-b")

File ~/miniconda3/lib/python3.11/site-packages/transformers/models/auto/auto_factory.py:564, in _BaseAutoModelClass.from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
    562 elif type(config) in cls._model_mapping.keys():
    563     model_class = _get_model_class(config, cls._model_mapping)
--> 564     return model_class.from_pretrained(
    565         pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
    566     )
    567 raise ValueError(
    568     f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
    569     f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
    570 )

File ~/miniconda3/lib/python3.11/site-packages/transformers/modeling_utils.py:3792, in PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, *model_args, **kwargs)
   3789 with safe_open(resolved_archive_file, framework="pt") as f:
   3790     metadata = f.metadata()
-> 3792 if metadata.get("format") == "pt":
   3793     pass
   3794 elif metadata.get("format") == "tf":

AttributeError: 'NoneType' object has no attribute 'get'

Same error for the nyu-visionx/moco-v3-vit-l model.

@isaacchung I don't think these are intended to be transformers models, looks like it's using the hub mixin for some other library (not clear what that is).

EDIT: taking a quick look at the safetensor keys, it's a timm vit, so this works:
timm.create_model('vit_base_patch16_224', pretrained=True, pretrained_cfg_overlay=dict(hf_hub_id='nyu-visionx/moco-v3-vit-b'))

thanks @rwightman ! yes it is a timm vit, and I think that should work.

I've also copied below the exact model file we use (taken from RCG and modified to use the huggingface PyTorchModelHubMixin to allow loading weights from HF). we loaded weights as follows using the class in the below file:

vision_tower = VisionTransformerMoCoV3.from_pretrained("nyu-visionx/moco-v3-vit-l")
moco_vision_transformer.py (click to expand)
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# > MoCo-v3 ViT-L model from https://github.com/LTH14/rcg

import math
import torch
import torch.nn as nn
from functools import partial, reduce
from operator import mul

from timm.models.vision_transformer import VisionTransformer, _cfg
from timm.layers.helpers import to_2tuple
from timm.models.layers import PatchEmbed
from huggingface_hub import PyTorchModelHubMixin


__all__ = [
    'vit_small',
    'vit_base',
    'vit_large',
    'vit_conv_small',
    'vit_conv_base',
]


class VisionTransformerMoCoV3(VisionTransformer, PyTorchModelHubMixin):
    def __init__(self, stop_grad_conv1=False, **kwargs):
        super().__init__(**kwargs)
        # Use fixed 2D sin-cos position embedding
        self.build_2d_sincos_position_embedding()

        # weight initialization
        for name, m in self.named_modules():
            if isinstance(m, nn.Linear):
                if 'qkv' in name:
                    # treat the weights of Q, K, V separately
                    val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
                    nn.init.uniform_(m.weight, -val, val)
                else:
                    nn.init.xavier_uniform_(m.weight)
                nn.init.zeros_(m.bias)
        nn.init.normal_(self.cls_token, std=1e-6)

        if isinstance(self.patch_embed, PatchEmbed):
            # xavier_uniform initialization
            val = math.sqrt(6. / float(3 * reduce(mul, self.patch_embed.patch_size, 1) + self.embed_dim))
            nn.init.uniform_(self.patch_embed.proj.weight, -val, val)
            nn.init.zeros_(self.patch_embed.proj.bias)

            if stop_grad_conv1:
                self.patch_embed.proj.weight.requires_grad = False
                self.patch_embed.proj.bias.requires_grad = False

    def build_2d_sincos_position_embedding(self, temperature=10000.):
        # important change for vit-l ckpt
        h = self.patch_embed.img_size[0] // self.patch_embed.patch_size[0]
        w = self.patch_embed.img_size[1] // self.patch_embed.patch_size[1]

        grid_w = torch.arange(w, dtype=torch.float32)
        grid_h = torch.arange(h, dtype=torch.float32)
        grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
        assert self.embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
        pos_dim = self.embed_dim // 4
        omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
        omega = 1. / (temperature**omega)
        out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
        out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
        pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1)[None, :, :]

        pe_token = torch.zeros([1, 1, self.embed_dim], dtype=torch.float32)
        self.pos_embed = nn.Parameter(torch.cat([pe_token, pos_emb], dim=1))
        self.pos_embed.requires_grad = False


class ConvStem(nn.Module):
    """ 
    ConvStem, from Early Convolutions Help Transformers See Better, Tete et al. https://arxiv.org/abs/2106.14881
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
        super().__init__()

        assert patch_size == 16, 'ConvStem only supports patch size of 16'
        assert embed_dim % 8 == 0, 'Embed dimension must be divisible by 8 for ConvStem'

        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.flatten = flatten

        # build stem, similar to the design in https://arxiv.org/abs/2106.14881
        stem = []
        input_dim, output_dim = 3, embed_dim // 8
        for l in range(4):
            stem.append(nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=2, padding=1, bias=False))
            stem.append(nn.BatchNorm2d(output_dim))
            stem.append(nn.ReLU(inplace=True))
            input_dim = output_dim
            output_dim *= 2
        stem.append(nn.Conv2d(input_dim, embed_dim, kernel_size=1))
        self.proj = nn.Sequential(*stem)

        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
        x = self.norm(x)
        return x


def vit_small(**kwargs):
    model = VisionTransformerMoCoV3(
        patch_size=16, embed_dim=384, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    return model


def vit_base(**kwargs):
    model = VisionTransformerMoCoV3(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    return model


def vit_large(**kwargs):
    model = VisionTransformerMoCoV3(
        patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    return model


def vit_conv_small(**kwargs):
    # minus one ViT block
    model = VisionTransformerMoCoV3(
        patch_size=16, embed_dim=384, depth=11, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), embed_layer=ConvStem, **kwargs)
    model.default_cfg = _cfg()
    return model


def vit_conv_base(**kwargs):
    # minus one ViT block
    model = VisionTransformerMoCoV3(
        patch_size=16, embed_dim=768, depth=11, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), embed_layer=ConvStem, **kwargs)
    model.default_cfg = _cfg()
    return model
ellisbrown changed discussion status to closed

Thanks all!

Sign up or log in to comment