File size: 2,759 Bytes
acbf23c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import torch
import transformers
from accelerate import dispatch_model, infer_auto_device_map
from accelerate.utils import get_balanced_memory
from typing import Dict, List, Any
class PreTrainedPipeline():
def __init__(self, path=""):
path = "oleksandrfluxon/mpt-30b-chat-test"
print("===> path", path)
with torch.autocast('cuda'):
config = transformers.AutoConfig.from_pretrained(
path,
trust_remote_code=True
)
# config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
print("===> loading model")
model = transformers.AutoModelForCausalLM.from_pretrained(
path,
config=config,
# torch_dtype=torch.bfloat16, # Load model weights in bfloat16
torch_dtype=torch.float16,
trust_remote_code=True,
# device_map="auto",
# load_in_8bit=True # Load model in the lowest 4-bit precision quantization
)
# model.to('cuda')
print("===> model loaded")
# removed device_map="auto"
tokenizer = transformers.AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b', padding_side="left")
max_memory = get_balanced_memory(
model,
max_memory=None,
no_split_module_classes=["MPTBlock"],
dtype='float16',
low_zero=False
)
device_map = infer_auto_device_map(
model,
max_memory=max_memory,
no_split_module_classes=["MPTBlock"],
dtype='float16'
)
model = dispatch_model(model, device_map=device_map)
# device='cuda:0'
self.pipeline = transformers.pipeline('text-generation', model=model, tokenizer=tokenizer)
print("===> init finished")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str`)
parameters (:obj: `str`)
Return:
A :obj:`str`: todo
"""
# get inputs
inputs = data.pop("inputs",data)
parameters = data.pop("parameters", {})
date = data.pop("date", None)
print("===> inputs", inputs)
print("===> parameters", parameters)
with torch.autocast('cuda'):
result = self.pipeline(inputs, **parameters)
print("===> result", result)
return result
|