oliverguhr's picture
changed paper link to the correct document
7589fe5
|
raw
history blame
6.05 kB
# German Sentiment Classification with Bert
This model was trained for sentiment classification of German language texts. To achieve the best results all model inputs needs to be preprocessed with the same procedure, that was applied during the training. To simplify the usage of the model,
we provide a Python package that bundles the code need for the preprocessing and inferencing.
The model uses the Googles Bert architecture and was trained on 1.834 million German-language samples. The training data contains texts from various domains like Twitter, Facebook and movie, app and hotel reviews.
You can find more information about the dataset and the training process in the [paper](http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.202.pdf).
## Using the Python package
To get started install the package from [pypi](https://pypi.org/project/germansentiment/):
```bash
pip install germansentiment
```
```python
from germansentiment import SentimentModel
model = SentimentModel()
texts = [
"Mit keinem guten Ergebniss","Das ist gar nicht mal so gut",
"Total awesome!","nicht so schlecht wie erwartet",
"Der Test verlief positiv.","Sie fährt ein grünes Auto."]
result = model.predict_sentiment(texts)
print(result)
```
The code above will output following list:
```python
["negative","negative","positive","positive","neutral", "neutral"]
```
## A minimal working Sample
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from typing import List
import torch
import re
class SentimentModel():
def __init__(self, model_name: str):
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.clean_chars = re.compile(r'[^A-Za-züöäÖÜÄß ]', re.MULTILINE)
self.clean_http_urls = re.compile(r'https*\\S+', re.MULTILINE)
self.clean_at_mentions = re.compile(r'@\\S+', re.MULTILINE)
def predict_sentiment(self, texts: List[str])-> List[str]:
texts = [self.clean_text(text) for text in texts]
# Add special tokens takes care of adding [CLS], [SEP], <s>... tokens in the right way for each model.
input_ids = self.tokenizer(texts, padding=True, truncation=True, add_special_tokens=True)
input_ids = torch.tensor(input_ids["input_ids"])
with torch.no_grad():
logits = self.model(input_ids)
label_ids = torch.argmax(logits[0], axis=1)
labels = [self.model.config.id2label[label_id] for label_id in label_ids.tolist()]
return labels
def replace_numbers(self,text: str) -> str:
return text.replace("0"," null").replace("1"," eins").replace("2"," zwei").replace("3"," drei").replace("4"," vier").replace("5"," fünf").replace("6"," sechs").replace("7"," sieben").replace("8"," acht").replace("9"," neun")
def clean_text(self,text: str)-> str:
text = text.replace("\
", " ")
text = self.clean_http_urls.sub('',text)
text = self.clean_at_mentions.sub('',text)
text = self.replace_numbers(text)
text = self.clean_chars.sub('', text) # use only text chars
text = ' '.join(text.split()) # substitute multiple whitespace with single whitespace
text = text.strip().lower()
return text
texts = ["Mit keinem guten Ergebniss","Das war unfair", "Das ist gar nicht mal so gut",
"Total awesome!","nicht so schlecht wie erwartet", "Das ist gar nicht mal so schlecht",
"Der Test verlief positiv.","Sie fährt ein grünes Auto.", "Der Fall wurde an die Polzei übergeben."]
model = SentimentModel(model_name = "oliverguhr/german-sentiment-bert")
print(model.predict_sentiment(texts))
```
## Model and Data
If you are interested in code and data that was used to train this model please have a look at [this repository](https://github.com/oliverguhr/german-sentiment) and our [paper](http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.202.pdf). Here is a table of the F1 scores that his model achieves on following datasets. Since we trained this model on a newer version of the transformer library, the results are slightly better than reported in the paper.
| Dataset | F1 micro Score |
| :----------------------------------------------------------- | -------------: |
| [holidaycheck](https://github.com/oliverguhr/german-sentiment) | 0.9568 |
| [scare](https://www.romanklinger.de/scare/) | 0.9418 |
| [filmstarts](https://github.com/oliverguhr/german-sentiment) | 0.9021 |
| [germeval](https://sites.google.com/view/germeval2017-absa/home) | 0.7536 |
| [PotTS](https://www.aclweb.org/anthology/L16-1181/) | 0.6780 |
| [emotions](https://github.com/oliverguhr/german-sentiment) | 0.9649 |
| [sb10k](https://www.spinningbytes.com/resources/germansentiment/) | 0.7376 |
| [Leipzig Wikipedia Corpus 2016](https://wortschatz.uni-leipzig.de/de/download/german) | 0.9967 |
| all | 0.9639 |
## Cite
For feedback and questions contact me view mail or Twitter [@oliverguhr](https://twitter.com/oliverguhr). Please cite us if you found this useful:
```
@InProceedings{guhr-EtAl:2020:LREC,
author = {Guhr, Oliver and Schumann, Anne-Kathrin and Bahrmann, Frank and Böhme, Hans Joachim},
title = {Training a Broad-Coverage German Sentiment Classification Model for Dialog Systems},
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
month = {May},
year = {2020},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {1620--1625},
url = {https://www.aclweb.org/anthology/2020.lrec-1.202}
}
```