resnet-50-finetuned-omars5

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5844
  • Accuracy: 0.8845

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3431 0.99 92 1.2810 0.5836
1.0465 2.0 185 0.8740 0.8176
0.8755 2.99 277 0.6467 0.7994
0.7459 4.0 370 0.5379 0.8480
0.7983 4.99 462 0.4385 0.8207
0.7692 6.0 555 0.5795 0.7842
0.5158 6.99 647 0.4936 0.8207
0.625 8.0 740 0.5316 0.8298
0.511 8.99 832 0.5202 0.8845
0.5025 10.0 925 0.5260 0.8784
0.508 10.99 1017 0.5307 0.8632
0.4652 12.0 1110 0.6060 0.8480
0.4432 12.99 1202 0.5051 0.8845
0.3373 14.0 1295 0.8695 0.8845
0.3968 14.99 1387 0.6805 0.8571
0.4268 16.0 1480 0.6541 0.8815
0.3029 16.99 1572 0.5710 0.8906
0.3801 18.0 1665 0.6499 0.8571
0.3545 18.99 1757 0.6727 0.8419
0.3526 20.0 1850 0.6542 0.8571
0.3458 20.99 1942 0.6625 0.8997
0.3078 22.0 2035 0.6551 0.8784
0.3677 22.99 2127 0.5953 0.8815
0.3386 24.0 2220 0.6549 0.8693
0.213 24.99 2312 0.5846 0.8997
0.3778 26.0 2405 0.6746 0.8602
0.3079 26.99 2497 0.6594 0.8997
0.2943 28.0 2590 0.6246 0.8815
0.2782 28.99 2682 0.6550 0.8906
0.2931 29.84 2760 0.5844 0.8845

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
37
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results