|
|
|
from transformers import AutoModel |
|
import torch |
|
|
|
model_name = "openbmb/UltraRAG-Embedding" |
|
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).to("cuda") |
|
|
|
|
|
|
|
|
|
model.eval() |
|
|
|
queries = ["MiniCPM-o 2.6 A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone"] |
|
passages = ["MiniCPM-o 2.6 is the latest and most capable model in the MiniCPM-o series. The model is built in an end-to-end fashion based on SigLip-400M, Whisper-medium-300M, ChatTTS-200M, and Qwen2.5-7B with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.6, and introduces new features for real-time speech conversation and multimodal live streaming."] |
|
|
|
embeddings_query_dense, embeddings_query_sparse = model.encode_query(queries, return_sparse_vectors=True, max_length=8192, dense_dim=1024) |
|
embeddings_doc_dense, embeddings_doc_sparse = model.encode_corpus(passages, return_sparse_vectors=True) |
|
|
|
dense_scores = (embeddings_query_dense @ embeddings_doc_dense.T) |
|
print(dense_scores.tolist()) |
|
print(model.compute_sparse_score_dicts(embeddings_query_sparse, embeddings_doc_sparse)) |
|
|
|
dense_scores, sparse_scores, mixed_scores = model.compute_score(queries, passages) |
|
print(dense_scores) |
|
print(sparse_scores) |
|
print(mixed_scores) |