nutrition-extractor
This model is a fine-tuned version of microsoft/layoutlmv3-large on the openfoodfacts/nutrient-detection-layout dataset. It allows to automatically extract nutrition values from images of nutrition tables.
It achieves the following results on the evaluation set:
- Loss: 0.0534
- Precision: 0.9545
- Recall: 0.9647
- F1: 0.9596
- Accuracy: 0.9917
Model description
This model can extract nutrient values from nutrition tables. This was developped as part of the Nutrisight project.
For more information about the project, please refer to the nutrisight directory in the openfoodfacts-ai GitHub repository.
As any model using the LayoutLM architecture, this model expects as input:
- the image
- the tokens (string) on the images
- the 2D coordinates of each tokens
The tokens and their 2D position is provided by an OCR model. This model was trained using OCR results coming from Google Cloud Vision.
Intended uses & limitations
This model is only intended to be used on images of products where a nutrition table can be found.
Training and evaluation data
The training and evaluation data can be found on the dataset page.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.9852 | 0.1664 | 15 | 1.1500 | 0.0 | 0.0 | 0.0 | 0.8101 |
1.0244 | 0.3329 | 30 | 0.8342 | 0.05 | 0.0074 | 0.0129 | 0.8123 |
0.7826 | 0.4993 | 45 | 0.6795 | 0.0789 | 0.1138 | 0.0932 | 0.8479 |
0.6767 | 0.6657 | 60 | 0.5963 | 0.1193 | 0.1644 | 0.1383 | 0.8578 |
0.6031 | 0.8322 | 75 | 0.5406 | 0.1671 | 0.2248 | 0.1917 | 0.8691 |
0.5756 | 0.9986 | 90 | 0.4935 | 0.2291 | 0.3112 | 0.2639 | 0.8778 |
0.5215 | 1.1650 | 105 | 0.4302 | 0.3267 | 0.3948 | 0.3575 | 0.8905 |
0.4782 | 1.3315 | 120 | 0.3782 | 0.3939 | 0.4654 | 0.4267 | 0.9020 |
0.4208 | 1.4979 | 135 | 0.3405 | 0.4027 | 0.5044 | 0.4478 | 0.9081 |
0.3532 | 1.6644 | 150 | 0.2930 | 0.4960 | 0.5820 | 0.5356 | 0.9252 |
0.3458 | 1.8308 | 165 | 0.2658 | 0.5155 | 0.6033 | 0.5560 | 0.9301 |
0.302 | 1.9972 | 180 | 0.2321 | 0.6112 | 0.7009 | 0.6530 | 0.9474 |
0.2655 | 2.1637 | 195 | 0.2093 | 0.6471 | 0.7264 | 0.6845 | 0.9520 |
0.2598 | 2.3301 | 210 | 0.1951 | 0.7013 | 0.7557 | 0.7275 | 0.9570 |
0.2364 | 2.4965 | 225 | 0.1794 | 0.7091 | 0.7743 | 0.7402 | 0.9590 |
0.2218 | 2.6630 | 240 | 0.1676 | 0.7216 | 0.7933 | 0.7558 | 0.9621 |
0.206 | 2.8294 | 255 | 0.1572 | 0.7436 | 0.8110 | 0.7758 | 0.9650 |
0.2053 | 2.9958 | 270 | 0.1580 | 0.7381 | 0.8114 | 0.7730 | 0.9640 |
0.1876 | 3.1623 | 285 | 0.1406 | 0.7738 | 0.8309 | 0.8013 | 0.9687 |
0.1602 | 3.3287 | 300 | 0.1420 | 0.7714 | 0.8277 | 0.7986 | 0.9671 |
0.1706 | 3.4951 | 315 | 0.1323 | 0.7933 | 0.8379 | 0.8150 | 0.9691 |
0.1585 | 3.6616 | 330 | 0.1313 | 0.8060 | 0.8551 | 0.8298 | 0.9700 |
0.1574 | 3.8280 | 345 | 0.1267 | 0.8129 | 0.8639 | 0.8376 | 0.9717 |
0.15 | 3.9945 | 360 | 0.1157 | 0.8336 | 0.8746 | 0.8536 | 0.9754 |
0.1192 | 4.1609 | 375 | 0.1120 | 0.8348 | 0.8709 | 0.8525 | 0.9741 |
0.1313 | 4.3273 | 390 | 0.1130 | 0.8395 | 0.8792 | 0.8589 | 0.9745 |
0.1179 | 4.4938 | 405 | 0.1093 | 0.8370 | 0.8871 | 0.8613 | 0.9755 |
0.1327 | 4.6602 | 420 | 0.1102 | 0.8400 | 0.8853 | 0.8621 | 0.9746 |
0.1323 | 4.8266 | 435 | 0.0997 | 0.8611 | 0.8987 | 0.8795 | 0.9782 |
0.1254 | 4.9931 | 450 | 0.0949 | 0.8499 | 0.8969 | 0.8728 | 0.9775 |
0.0999 | 5.1595 | 465 | 0.0847 | 0.8658 | 0.8992 | 0.8822 | 0.9797 |
0.1017 | 5.3259 | 480 | 0.0803 | 0.8747 | 0.9108 | 0.8924 | 0.9810 |
0.091 | 5.4924 | 495 | 0.0796 | 0.8784 | 0.9057 | 0.8918 | 0.9806 |
0.0979 | 5.6588 | 510 | 0.0943 | 0.8607 | 0.8950 | 0.8775 | 0.9773 |
0.1024 | 5.8252 | 525 | 0.0804 | 0.8710 | 0.9062 | 0.8882 | 0.9805 |
0.0952 | 5.9917 | 540 | 0.0787 | 0.8845 | 0.9178 | 0.9008 | 0.9816 |
0.0742 | 6.1581 | 555 | 0.0776 | 0.8918 | 0.9150 | 0.9033 | 0.9823 |
0.0764 | 6.3245 | 570 | 0.0721 | 0.9028 | 0.9187 | 0.9107 | 0.9837 |
0.0813 | 6.4910 | 585 | 0.0664 | 0.9065 | 0.9229 | 0.9146 | 0.9844 |
0.0791 | 6.6574 | 600 | 0.0642 | 0.9026 | 0.9252 | 0.9138 | 0.9848 |
0.0792 | 6.8239 | 615 | 0.0673 | 0.8964 | 0.9248 | 0.9104 | 0.9841 |
0.078 | 6.9903 | 630 | 0.0693 | 0.8938 | 0.9224 | 0.9079 | 0.9833 |
0.0678 | 7.1567 | 645 | 0.0672 | 0.9082 | 0.9327 | 0.9203 | 0.9852 |
0.0685 | 7.3232 | 660 | 0.0655 | 0.8926 | 0.9224 | 0.9073 | 0.9840 |
0.0555 | 7.4896 | 675 | 0.0615 | 0.9156 | 0.9271 | 0.9213 | 0.9856 |
0.07 | 7.6560 | 690 | 0.0587 | 0.9173 | 0.9373 | 0.9272 | 0.9868 |
0.065 | 7.8225 | 705 | 0.0558 | 0.9205 | 0.9405 | 0.9304 | 0.9875 |
0.0599 | 7.9889 | 720 | 0.0579 | 0.9253 | 0.9433 | 0.9342 | 0.9878 |
0.0571 | 8.1553 | 735 | 0.0593 | 0.9148 | 0.9331 | 0.9239 | 0.9866 |
0.0563 | 8.3218 | 750 | 0.0605 | 0.9152 | 0.9322 | 0.9236 | 0.9863 |
0.0602 | 8.4882 | 765 | 0.0581 | 0.9252 | 0.9308 | 0.9280 | 0.9863 |
0.0582 | 8.6546 | 780 | 0.0581 | 0.9206 | 0.9373 | 0.9289 | 0.9872 |
0.0514 | 8.8211 | 795 | 0.0557 | 0.9245 | 0.9382 | 0.9313 | 0.9873 |
0.0467 | 8.9875 | 810 | 0.0520 | 0.9291 | 0.9498 | 0.9394 | 0.9883 |
0.0435 | 9.1540 | 825 | 0.0526 | 0.9229 | 0.9447 | 0.9337 | 0.9880 |
0.0531 | 9.3204 | 840 | 0.0502 | 0.9249 | 0.9443 | 0.9345 | 0.9884 |
0.0502 | 9.4868 | 855 | 0.0545 | 0.9171 | 0.9452 | 0.9309 | 0.9874 |
0.0377 | 9.6533 | 870 | 0.0618 | 0.9077 | 0.9368 | 0.9221 | 0.9851 |
0.0416 | 9.8197 | 885 | 0.0549 | 0.9267 | 0.9392 | 0.9329 | 0.9881 |
0.044 | 9.9861 | 900 | 0.0529 | 0.9366 | 0.9475 | 0.9420 | 0.9884 |
0.0383 | 10.1526 | 915 | 0.0490 | 0.9332 | 0.9475 | 0.9403 | 0.9889 |
0.0454 | 10.3190 | 930 | 0.0507 | 0.9264 | 0.9471 | 0.9366 | 0.9885 |
0.0416 | 10.4854 | 945 | 0.0467 | 0.9364 | 0.9498 | 0.9430 | 0.9891 |
0.0403 | 10.6519 | 960 | 0.0499 | 0.9314 | 0.9457 | 0.9385 | 0.9886 |
0.0354 | 10.8183 | 975 | 0.0523 | 0.9258 | 0.9452 | 0.9354 | 0.9883 |
0.0338 | 10.9847 | 990 | 0.0521 | 0.9214 | 0.9424 | 0.9318 | 0.9880 |
0.0347 | 11.1512 | 1005 | 0.0539 | 0.9235 | 0.9475 | 0.9354 | 0.9880 |
0.0364 | 11.3176 | 1020 | 0.0560 | 0.9194 | 0.9480 | 0.9335 | 0.9871 |
0.0363 | 11.4840 | 1035 | 0.0509 | 0.9286 | 0.9480 | 0.9382 | 0.9889 |
0.0308 | 11.6505 | 1050 | 0.0498 | 0.9389 | 0.9484 | 0.9436 | 0.9893 |
0.032 | 11.8169 | 1065 | 0.0491 | 0.9364 | 0.9443 | 0.9403 | 0.9891 |
0.0331 | 11.9834 | 1080 | 0.0455 | 0.9373 | 0.9443 | 0.9408 | 0.9892 |
0.0301 | 12.1498 | 1095 | 0.0486 | 0.9359 | 0.9489 | 0.9423 | 0.9892 |
0.0308 | 12.3162 | 1110 | 0.0513 | 0.9325 | 0.9503 | 0.9413 | 0.9891 |
0.0253 | 12.4827 | 1125 | 0.0510 | 0.9296 | 0.9503 | 0.9398 | 0.9892 |
0.0301 | 12.6491 | 1140 | 0.0533 | 0.9308 | 0.9489 | 0.9397 | 0.9886 |
0.0328 | 12.8155 | 1155 | 0.0549 | 0.9287 | 0.9443 | 0.9364 | 0.9885 |
0.0298 | 12.9820 | 1170 | 0.0504 | 0.9402 | 0.9498 | 0.9450 | 0.9895 |
0.0256 | 13.1484 | 1185 | 0.0515 | 0.9354 | 0.9419 | 0.9387 | 0.9888 |
0.0313 | 13.3148 | 1200 | 0.0483 | 0.9418 | 0.9545 | 0.9481 | 0.9905 |
0.022 | 13.4813 | 1215 | 0.0463 | 0.9361 | 0.9531 | 0.9445 | 0.9899 |
0.0245 | 13.6477 | 1230 | 0.0494 | 0.9368 | 0.9494 | 0.9430 | 0.9893 |
0.0251 | 13.8141 | 1245 | 0.0493 | 0.9404 | 0.9531 | 0.9467 | 0.9898 |
0.0259 | 13.9806 | 1260 | 0.0511 | 0.9386 | 0.9522 | 0.9454 | 0.9895 |
0.03 | 14.1470 | 1275 | 0.0535 | 0.9344 | 0.9457 | 0.9400 | 0.9889 |
0.0192 | 14.3135 | 1290 | 0.0491 | 0.9428 | 0.9494 | 0.9461 | 0.9899 |
0.0267 | 14.4799 | 1305 | 0.0490 | 0.9457 | 0.9545 | 0.9501 | 0.9901 |
0.0241 | 14.6463 | 1320 | 0.0506 | 0.9435 | 0.9540 | 0.9487 | 0.9899 |
0.0211 | 14.8128 | 1335 | 0.0510 | 0.9444 | 0.9540 | 0.9492 | 0.9903 |
0.0171 | 14.9792 | 1350 | 0.0499 | 0.9405 | 0.9545 | 0.9474 | 0.9898 |
0.0226 | 15.1456 | 1365 | 0.0511 | 0.9366 | 0.9540 | 0.9452 | 0.9894 |
0.024 | 15.3121 | 1380 | 0.0484 | 0.9445 | 0.9559 | 0.9501 | 0.9899 |
0.018 | 15.4785 | 1395 | 0.0482 | 0.9469 | 0.9517 | 0.9493 | 0.9903 |
0.0191 | 15.6449 | 1410 | 0.0491 | 0.9442 | 0.9512 | 0.9477 | 0.9899 |
0.0203 | 15.8114 | 1425 | 0.0451 | 0.9510 | 0.9554 | 0.9532 | 0.9912 |
0.0198 | 15.9778 | 1440 | 0.0447 | 0.9497 | 0.9549 | 0.9523 | 0.9911 |
0.0167 | 16.1442 | 1455 | 0.0444 | 0.9487 | 0.9540 | 0.9514 | 0.9909 |
0.0178 | 16.3107 | 1470 | 0.0513 | 0.9386 | 0.9512 | 0.9449 | 0.9892 |
0.024 | 16.4771 | 1485 | 0.0502 | 0.9430 | 0.9536 | 0.9483 | 0.9899 |
0.0206 | 16.6436 | 1500 | 0.0459 | 0.9483 | 0.9545 | 0.9514 | 0.9908 |
0.0188 | 16.8100 | 1515 | 0.0469 | 0.9474 | 0.9540 | 0.9507 | 0.9906 |
0.016 | 16.9764 | 1530 | 0.0463 | 0.9468 | 0.9582 | 0.9524 | 0.9906 |
0.0161 | 17.1429 | 1545 | 0.0455 | 0.9516 | 0.9596 | 0.9556 | 0.9911 |
0.0135 | 17.3093 | 1560 | 0.0475 | 0.9524 | 0.9573 | 0.9548 | 0.9909 |
0.0148 | 17.4757 | 1575 | 0.0479 | 0.9440 | 0.9545 | 0.9492 | 0.9905 |
0.0173 | 17.6422 | 1590 | 0.0455 | 0.9539 | 0.9605 | 0.9572 | 0.9915 |
0.0173 | 17.8086 | 1605 | 0.0456 | 0.9475 | 0.9554 | 0.9514 | 0.9913 |
0.0185 | 17.9750 | 1620 | 0.0461 | 0.9498 | 0.9577 | 0.9537 | 0.9908 |
0.0153 | 18.1415 | 1635 | 0.0472 | 0.9491 | 0.9605 | 0.9548 | 0.9911 |
0.0148 | 18.3079 | 1650 | 0.0446 | 0.9507 | 0.9587 | 0.9547 | 0.9913 |
0.0136 | 18.4743 | 1665 | 0.0441 | 0.9486 | 0.9601 | 0.9543 | 0.9914 |
0.0185 | 18.6408 | 1680 | 0.0478 | 0.9528 | 0.9573 | 0.9551 | 0.9915 |
0.0147 | 18.8072 | 1695 | 0.0493 | 0.9515 | 0.9652 | 0.9583 | 0.9912 |
0.0156 | 18.9736 | 1710 | 0.0509 | 0.9440 | 0.9545 | 0.9492 | 0.9903 |
0.0113 | 19.1401 | 1725 | 0.0460 | 0.9559 | 0.9573 | 0.9566 | 0.9911 |
0.014 | 19.3065 | 1740 | 0.0493 | 0.9439 | 0.9526 | 0.9482 | 0.9905 |
0.0147 | 19.4730 | 1755 | 0.0498 | 0.9476 | 0.9568 | 0.9522 | 0.9906 |
0.0126 | 19.6394 | 1770 | 0.0493 | 0.9474 | 0.9531 | 0.9502 | 0.9906 |
0.0167 | 19.8058 | 1785 | 0.0491 | 0.9463 | 0.9577 | 0.9520 | 0.9904 |
0.0126 | 19.9723 | 1800 | 0.0474 | 0.9492 | 0.9540 | 0.9516 | 0.9908 |
0.0107 | 20.1387 | 1815 | 0.0462 | 0.9524 | 0.9577 | 0.9551 | 0.9914 |
0.0115 | 20.3051 | 1830 | 0.0481 | 0.9504 | 0.9614 | 0.9559 | 0.9911 |
0.0128 | 20.4716 | 1845 | 0.0486 | 0.9475 | 0.9563 | 0.9519 | 0.9907 |
0.0113 | 20.6380 | 1860 | 0.0491 | 0.9477 | 0.9591 | 0.9534 | 0.9910 |
0.0119 | 20.8044 | 1875 | 0.0514 | 0.9494 | 0.9503 | 0.9499 | 0.9901 |
0.0122 | 20.9709 | 1890 | 0.0480 | 0.9481 | 0.9591 | 0.9536 | 0.9911 |
0.0123 | 21.1373 | 1905 | 0.0477 | 0.9467 | 0.9577 | 0.9522 | 0.9909 |
0.0116 | 21.3037 | 1920 | 0.0486 | 0.9485 | 0.9582 | 0.9533 | 0.9910 |
0.0108 | 21.4702 | 1935 | 0.0488 | 0.9442 | 0.9582 | 0.9511 | 0.9905 |
0.0115 | 21.6366 | 1950 | 0.0472 | 0.9498 | 0.9587 | 0.9542 | 0.9913 |
0.0083 | 21.8031 | 1965 | 0.0476 | 0.9490 | 0.9596 | 0.9543 | 0.9911 |
0.0094 | 21.9695 | 1980 | 0.0475 | 0.9482 | 0.9605 | 0.9543 | 0.9909 |
0.0118 | 22.1359 | 1995 | 0.0492 | 0.9449 | 0.9554 | 0.9501 | 0.9904 |
0.01 | 22.3024 | 2010 | 0.0486 | 0.9492 | 0.9554 | 0.9523 | 0.9909 |
0.0114 | 22.4688 | 2025 | 0.0497 | 0.9502 | 0.9577 | 0.9540 | 0.9910 |
0.0091 | 22.6352 | 2040 | 0.0499 | 0.9503 | 0.9582 | 0.9542 | 0.9910 |
0.0077 | 22.8017 | 2055 | 0.0502 | 0.9513 | 0.9614 | 0.9563 | 0.9911 |
0.01 | 22.9681 | 2070 | 0.0513 | 0.9544 | 0.9628 | 0.9586 | 0.9913 |
0.0087 | 23.1345 | 2085 | 0.0485 | 0.9500 | 0.9610 | 0.9554 | 0.9912 |
0.0073 | 23.3010 | 2100 | 0.0485 | 0.9557 | 0.9628 | 0.9593 | 0.9917 |
0.0083 | 23.4674 | 2115 | 0.0485 | 0.9535 | 0.9610 | 0.9572 | 0.9913 |
0.0117 | 23.6338 | 2130 | 0.0479 | 0.9557 | 0.9624 | 0.9590 | 0.9916 |
0.0095 | 23.8003 | 2145 | 0.0508 | 0.9498 | 0.9587 | 0.9542 | 0.9911 |
0.009 | 23.9667 | 2160 | 0.0513 | 0.9492 | 0.9628 | 0.9560 | 0.9910 |
0.0077 | 24.1331 | 2175 | 0.0504 | 0.9553 | 0.9628 | 0.9591 | 0.9915 |
0.0087 | 24.2996 | 2190 | 0.0500 | 0.9521 | 0.9610 | 0.9565 | 0.9913 |
0.0068 | 24.4660 | 2205 | 0.0506 | 0.9539 | 0.9610 | 0.9574 | 0.9913 |
0.0094 | 24.6325 | 2220 | 0.0500 | 0.9507 | 0.9591 | 0.9549 | 0.9913 |
0.0088 | 24.7989 | 2235 | 0.0486 | 0.9508 | 0.9596 | 0.9552 | 0.9914 |
0.0089 | 24.9653 | 2250 | 0.0507 | 0.9508 | 0.9610 | 0.9559 | 0.9911 |
0.0063 | 25.1318 | 2265 | 0.0479 | 0.9561 | 0.9610 | 0.9585 | 0.9917 |
0.0058 | 25.2982 | 2280 | 0.0506 | 0.9526 | 0.9619 | 0.9572 | 0.9911 |
0.0102 | 25.4646 | 2295 | 0.0499 | 0.9526 | 0.9624 | 0.9575 | 0.9912 |
0.0079 | 25.6311 | 2310 | 0.0543 | 0.9469 | 0.9614 | 0.9541 | 0.9905 |
0.009 | 25.7975 | 2325 | 0.0498 | 0.9526 | 0.9619 | 0.9572 | 0.9915 |
0.0068 | 25.9639 | 2340 | 0.0511 | 0.9509 | 0.9619 | 0.9564 | 0.9911 |
0.007 | 26.1304 | 2355 | 0.0492 | 0.9527 | 0.9633 | 0.9580 | 0.9914 |
0.0086 | 26.2968 | 2370 | 0.0516 | 0.9500 | 0.9610 | 0.9554 | 0.9913 |
0.0078 | 26.4632 | 2385 | 0.0503 | 0.9504 | 0.9610 | 0.9557 | 0.9914 |
0.0067 | 26.6297 | 2400 | 0.0514 | 0.9527 | 0.9628 | 0.9577 | 0.9915 |
0.0059 | 26.7961 | 2415 | 0.0504 | 0.9549 | 0.9628 | 0.9588 | 0.9919 |
0.0089 | 26.9626 | 2430 | 0.0520 | 0.9517 | 0.9605 | 0.9561 | 0.9916 |
0.0059 | 27.1290 | 2445 | 0.0512 | 0.9522 | 0.9624 | 0.9573 | 0.9917 |
0.0073 | 27.2954 | 2460 | 0.0526 | 0.9530 | 0.9610 | 0.9570 | 0.9916 |
0.0065 | 27.4619 | 2475 | 0.0530 | 0.9527 | 0.9628 | 0.9577 | 0.9916 |
0.0064 | 27.6283 | 2490 | 0.0515 | 0.9535 | 0.9610 | 0.9572 | 0.9917 |
0.0072 | 27.7947 | 2505 | 0.0542 | 0.9482 | 0.9610 | 0.9546 | 0.9907 |
0.0066 | 27.9612 | 2520 | 0.0537 | 0.9491 | 0.9610 | 0.9550 | 0.9909 |
0.006 | 28.1276 | 2535 | 0.0518 | 0.9531 | 0.9628 | 0.9579 | 0.9915 |
0.0074 | 28.2940 | 2550 | 0.0523 | 0.9521 | 0.9610 | 0.9565 | 0.9914 |
0.0068 | 28.4605 | 2565 | 0.0534 | 0.9495 | 0.9614 | 0.9555 | 0.9913 |
0.0055 | 28.6269 | 2580 | 0.0521 | 0.9548 | 0.9619 | 0.9584 | 0.9917 |
0.0056 | 28.7933 | 2595 | 0.0526 | 0.9522 | 0.9614 | 0.9568 | 0.9913 |
0.0066 | 28.9598 | 2610 | 0.0527 | 0.9522 | 0.9619 | 0.9570 | 0.9913 |
0.0053 | 29.1262 | 2625 | 0.0533 | 0.9531 | 0.9628 | 0.9579 | 0.9913 |
0.0063 | 29.2926 | 2640 | 0.0520 | 0.9530 | 0.9610 | 0.9570 | 0.9913 |
0.0059 | 29.4591 | 2655 | 0.0533 | 0.9504 | 0.9605 | 0.9554 | 0.9910 |
0.0059 | 29.6255 | 2670 | 0.0532 | 0.9526 | 0.9619 | 0.9572 | 0.9912 |
0.0062 | 29.7920 | 2685 | 0.0516 | 0.9535 | 0.9624 | 0.9579 | 0.9917 |
0.0064 | 29.9584 | 2700 | 0.0515 | 0.9522 | 0.9624 | 0.9573 | 0.9915 |
0.0055 | 30.1248 | 2715 | 0.0513 | 0.9549 | 0.9633 | 0.9591 | 0.9917 |
0.0064 | 30.2913 | 2730 | 0.0524 | 0.9540 | 0.9628 | 0.9584 | 0.9916 |
0.0055 | 30.4577 | 2745 | 0.0530 | 0.9531 | 0.9633 | 0.9582 | 0.9915 |
0.0065 | 30.6241 | 2760 | 0.0528 | 0.9536 | 0.9642 | 0.9589 | 0.9917 |
0.0068 | 30.7906 | 2775 | 0.0530 | 0.9518 | 0.9633 | 0.9575 | 0.9916 |
0.0047 | 30.9570 | 2790 | 0.0545 | 0.9532 | 0.9647 | 0.9589 | 0.9916 |
0.0051 | 31.1234 | 2805 | 0.0534 | 0.9545 | 0.9647 | 0.9596 | 0.9917 |
0.0044 | 31.2899 | 2820 | 0.0532 | 0.9531 | 0.9633 | 0.9582 | 0.9914 |
0.0068 | 31.4563 | 2835 | 0.0532 | 0.9527 | 0.9633 | 0.9580 | 0.9913 |
0.0045 | 31.6227 | 2850 | 0.0531 | 0.9545 | 0.9638 | 0.9591 | 0.9915 |
0.0047 | 31.7892 | 2865 | 0.0530 | 0.9540 | 0.9633 | 0.9586 | 0.9916 |
0.0075 | 31.9556 | 2880 | 0.0533 | 0.9549 | 0.9638 | 0.9593 | 0.9916 |
0.0055 | 32.1221 | 2895 | 0.0525 | 0.9553 | 0.9638 | 0.9595 | 0.9917 |
0.006 | 32.2885 | 2910 | 0.0523 | 0.9553 | 0.9638 | 0.9595 | 0.9917 |
0.0062 | 32.4549 | 2925 | 0.0525 | 0.9544 | 0.9633 | 0.9589 | 0.9917 |
0.0059 | 32.6214 | 2940 | 0.0525 | 0.9549 | 0.9638 | 0.9593 | 0.9917 |
0.0058 | 32.7878 | 2955 | 0.0531 | 0.9549 | 0.9642 | 0.9596 | 0.9917 |
0.005 | 32.9542 | 2970 | 0.0533 | 0.9536 | 0.9633 | 0.9584 | 0.9916 |
0.007 | 33.1207 | 2985 | 0.0533 | 0.9536 | 0.9633 | 0.9584 | 0.9916 |
0.0047 | 33.2871 | 3000 | 0.0532 | 0.9536 | 0.9633 | 0.9584 | 0.9916 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.5.1
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 64
Model tree for openfoodfacts/nutrition-extractor
Base model
microsoft/layoutlmv3-largeDataset used to train openfoodfacts/nutrition-extractor
Evaluation results
- Precision on openfoodfacts/nutrient-detection-layoutself-reported0.955
- Recall on openfoodfacts/nutrient-detection-layoutself-reported0.965
- F1 on openfoodfacts/nutrient-detection-layoutself-reported0.960
- Accuracy on openfoodfacts/nutrient-detection-layoutself-reported0.992