|
from typing import Any, Dict, List |
|
|
|
from haystack.schema import Document |
|
from fastrag.rankers import QuantizedBiEncoderRanker |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
model_id = "Intel/bge-large-en-v1.5-rag-int8-static" |
|
self.ranker = QuantizedBiEncoderRanker(model_name_or_path=model_id) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
query = data.get("query", None) |
|
queries = data.get("queries", None) |
|
documents = data.get("documents", None) |
|
batch_size = data.get("batch_size", None) |
|
top_k = data.get("top_k", None) |
|
|
|
if query is not None: |
|
assert isinstance(query, str), "Expected query to be a string" |
|
assert isinstance(documents, list), "Expected documents to be a list" |
|
assert all( |
|
isinstance(d, dict) for d in documents |
|
), "Expected each document in documents to be a dictionary" |
|
documents = [Document.from_dict(d) for d in documents] |
|
return self.ranker.predict(query=query, documents=documents, top_k=top_k) |
|
|
|
elif queries is not None: |
|
assert isinstance(queries, list), "Expected queries to be a list" |
|
assert all( |
|
isinstance(query, str) for query in queries |
|
), "Expected each query in queries to be a string" |
|
assert isinstance(documents, list), "Expected documents to be a list" |
|
assert all( |
|
all(isinstance(d, dict) for d in doc) for doc in documents |
|
), "Expected each document in list of documents to be a dictionary" |
|
documents = [Document.from_dict(d) for d in documents] |
|
return self.ranker.predict_batch( |
|
queries=queries, documents=documents, batch_size=batch_size, top_k=top_k |
|
) |
|
|
|
else: |
|
raise ValueError("Expected either query or queries") |
|
|