👀 Multimodal - MiniCPM-o 2.6 is a new sota any-to-any model by OpenBMB (vision, speech and text!) - VideoChat-Flash-Qwen2.5-2B is new video multimodal models by OpenGVLab that come in sizes 2B & 7B in resolutions 224 & 448 - ByteDance released larger SA2VA that comes in 26B parameters - Dataset: VRC-Bench is a new diverse benchmark for multimodal LLM reasoning performance
💬 LLMs - MiniMax-Text-01 is a new huge language model (456B passive 45.9B active params) by MiniMaxAI with context length of 4M tokens 🤯 - Dataset: Sky-T1-data-17k is a diverse dataset used to train Sky-T1-32B - kyutai released Helium-1-Preview-2B is a new small multilingual LM - Wayfarer-12B is a new LLM able to write D&D 🧙🏻♂️ - ReaderLM-v2 is a new HTML parsing model by Jina AI - Dria released, Dria-Agent-a-3B, new agentic coding model (Pythonic function calling) based on Qwen2.5 Coder - Unsloth released Phi-4, faster and memory efficient Llama 3.3
🖼️ Vision - MatchAnything is a new foundation model for matching - FitDit is a high-fidelity VTON model based on DiT architecture
🗣️ Audio - OuteTTS-0.3-1B is a new multilingual text-to-speech model with voice cloning and emotion control capabilities
📖 Retrieval - lightblue released a new reranker based on Qwen2.5 LB-reranker-0.5B-v1.0 that can handle 95+ languages - cde-small-v2 is a new sota small retrieval model by @jxm
Multimodal 🖼️ > ByteDance released SA2VA: a family of vision LMs that can take image, video, text and visual prompts > moondream2 is out with new capabilities like outputting structured data and gaze detection! > Dataset: Alibaba DAMO lab released multimodal textbook — 22k hours worth of samples from instruction videos 🤯 > Dataset: SciCap captioning on scientific documents benchmark dataset is released along with the challenge!
LLMs 💬 > Microsoft released Phi-4, sota open-source 14B language model 🔥 > Dolphin is back with Dolphin 3.0 Llama 3.1 8B 🐬🐬 > Prime-RL released Eurus-2-7B-PRIME a new language model trained using PRIME alignment > SmallThinker-3B is a new small reasoning LM based on Owen2.5-3B-Instruct 💭 > Dataset: QWQ-LONGCOT-500K is the dataset used to train SmallThinker, generated using QwQ-32B-preview 📕 > Dataset: @cfahlgren1 released React Code Instructions: a dataset of code instruction-code pairs 📕 > Dataset: Qwen team is on the roll, they just released CodeElo, a dataset of code preferences 👩🏻💻
Embeddings 🔖 > @MoritzLaurer released zero-shot version of ModernBERT large 👏 > KaLM is a new family of performant multilingual embedding models with MIT license built using Qwen2-0.5B
Image/Video Generation ⏯️ > NVIDIA released Cosmos, a new family of diffusion/autoregressive World Foundation Models generating worlds from images, videos and texts 🔥 > Adobe released TransPixar: a new text-to-video model that can generate assets with transparent backgrounds (a first!) > Dataset: fal released cosmos-openvid-1m Cosmos-tokenized OpenVid-1M with samples from OpenVid-1M
Others > Prior Labs released TabPFNv2, the best tabular transformer is out for classification and regression > Metagene-1 is a new RNA language model that can be used for pathogen detection, zero-shot embedding and genome understanding
> The models are capable of tasks involving vision-language understanding and visual referrals (referring segmentation) both for images and videos ⏯️
> The models come in 1B, 4B and 8B and are based on InternVL2.5 for base architecture and Qwen2, Qwen2.5 and InternLM2 for language model part (depending on the checkpoint)
> The model is very interesting, it has different encoders for different modalities each (visual prompt, text prompt, image and video) then it concatenates these to feed into LLM 💬
the output segmentation tokens are passed to SAM2, to sort of match text (captions or semantic classes) to masks ⤵️
> Their annotation pipeline is also interesting, they seems to use two open large vision LMs to refine the annotations, and have different levels of descriptions to provide consistency.
I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!
* Iteratively sample CoTs from the model, using a mix of different search strategies. This gives you something like Stream of Search via prompting. * Verify correctness of each CoT using GPT-4o (needed because exact match doesn't work well in medicine where there are lots of aliases) * Use GPT-4o to reformat the concatenated CoTs into a single stream that includes smooth transitions like "hmm, wait" etc that one sees in o1 * Use the resulting data for SFT & RL * Use sparse rewards from GPT-4o to guide RL training. They find RL gives an average ~3 point boost across medical benchmarks and SFT on this data already gives a strong improvement.
Applying this strategy to other domains could be quite promising, provided the training data can be formulated with verifiable problems!
The paper has a lot of experiments (they trained 84 models!) about what makes the video LMs work ⏯️
Try the demo for best setup here https://huggingface.co/spaces/Apollo-LMMs/Apollo-3B they evaluate sampling strategies, scaling laws for models and datasets, video representation and more! > The authors find out that whatever design decision was applied to small models also scale properly when the model and dataset are scaled 📈 scaling dataset has diminishing returns for smaller models > They evaluate frame sampling strategies, and find that FPS sampling is better than uniform sampling, and they find 8-32 tokens per frame optimal > They also compare image encoders, they try a variation of models from shape optimized SigLIP to DINOv2 they find google/siglip-so400m-patch14-384 to be most powerful 🔥 > they also compare freezing different parts of models, training all stages with some frozen parts give the best yield
They eventually release three models, where Apollo-3B outperforms most 7B models and Apollo 7B outperforms 30B models 🔥
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute 🔥
How? By combining step-wise reward models with tree search algorithms :)
We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"
We're open sourcing the full recipe and sharing a detailed blog post.
In our blog post we cover:
📈 Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.
🎄 Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.
🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM