Data Is Better Together Contributor

community
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

data-is-better-together-contributor's activity

prithivMLmods 
posted an update 3 days ago
view post
Post
2772
Triangulum Catalogued 🔥💫

🎯Triangulum is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively.

+ Triangulum-10B : prithivMLmods/Triangulum-10B
+ Quants : prithivMLmods/Triangulum-10B-GGUF

+ Triangulum-5B : prithivMLmods/Triangulum-5B
+ Quants : prithivMLmods/Triangulum-5B-GGUF

+ Triangulum-1B : prithivMLmods/Triangulum-1B
+ Quants : prithivMLmods/Triangulum-1B-GGUF
  • 1 reply
·
1aurent 
posted an update 3 days ago
davidberenstein1957 
posted an update 5 days ago
alielfilali01 
posted an update 5 days ago
view post
Post
1673
~75% on the challenging GPQA with only 40M parameters 🔥🥳

GREAT ACHIEVEMENT ! Or is it ?

This new Work, "Data Laundering: Artificially Boosting Benchmark Results through Knowledge Distillation", take out the mystery about many models i personally suspected their results. Speacially on leaderboards other than the english one, Like the Open Arabic LLM Leaderbaord OALL/Open-Arabic-LLM-Leaderboard.

The authors of this work, first started by training a model on the GPQA data, which, unsurprisingly, led to the model achieving 100% performance.

Afterward, they trained what they referred to as a 'legitimate' model on legitimate data (MedMCQA). However, they introduced a distillation loss from the earlier, 'cheated' model.

What they discovered was fascinating: the knowledge of GPQA leaked through this distillation loss, even though the legitimate model was never explicitly trained on GPQA during this stage.

This raises important questions about the careful use of distillation in model training, especially when the training data is opaque. As they demonstrated, it’s apparently possible to (intentionally or unintentionally) leak test data through this method.

Find out more: Data Laundering: Artificially Boosting Benchmark Results through Knowledge Distillation (2412.15255)
  • 1 reply
·
davanstrien 
posted an update 8 days ago
view post
Post
2943
🇸🇰 Hovorte po slovensky? Help build better AI for Slovak!

We only need 90 more annotations to include Slovak in the next Hugging Face FineWeb2-C dataset ( data-is-better-together/fineweb-c) release!

Your contribution will help create better language models for 5+ million Slovak speakers.

Annotate here: data-is-better-together/fineweb-c.

Read more about why we're doing it: https://huggingface.co/blog/davanstrien/fineweb2-community
  • 3 replies
·
sayakpaul 
posted an update 11 days ago
prithivMLmods 
posted an update 13 days ago
davanstrien 
posted an update 14 days ago
view post
Post
1671
Introducing FineWeb-C 🌐🎓, a community-built dataset for improving language models in ALL languages.

Inspired by FineWeb-Edu the community is labelling the educational quality of texts for many languages.

318 annotators, 32K+ annotations, 12 languages - and growing! 🌍

data-is-better-together/fineweb-c
fdaudens 
posted an update 15 days ago
view post
Post
1244
🔍 From instruction-following to creative storytelling, dive into 2024's most impactful AI datasets! These gems are shaping everything from scientific research to video understanding.

Check it out: huggingface/open-source-ai-year-in-review-2024
prithivMLmods 
posted an update 15 days ago
view post
Post
2464
Qwen2VL Models: Vision and Language Processing 🍉

📍FT; [ Latex OCR, Math Parsing, Text Analogy OCRTest ]

Colab Demo: prithivMLmods/Qwen2-VL-OCR-2B-Instruct

❄️Demo : prithivMLmods/Qwen2-VL-2B . The demo includes the Qwen2VL 2B Base Model.

🎯The space handles documenting content from the input image along with standardized plain text. It includes adjustment tools with over 30 font styles, file formatting support for PDF and DOCX, textual alignments, font size adjustments, and line spacing modifications.

📄PDFs are rendered using the ReportLab software library toolkit.

🧵Models :
+ prithivMLmods/Qwen2-VL-OCR-2B-Instruct
+ prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct
+ prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct

🚀Sample Document :
+ https://drive.google.com/file/d/1Hfqqzq4Xc-3eTjbz-jcQY84V5E1YM71E/view?usp=sharing

📦Collection :
+ prithivMLmods/vision-language-models-67639f790e806e1f9799979f

.
.
.
@prithivMLmods 🤗
  • 1 reply
·
burtenshaw 
posted an update 16 days ago
view post
Post
2620
People are flexing their end of year stats, so I made this app to show hub stats in a tidy design!

Thanks @Ameeeee and @jfcalvo for the feature from Argilla!
burtenshaw/recap
  • 1 reply
·
davidberenstein1957 
posted an update 16 days ago
prithivMLmods 
posted an update 16 days ago
view post
Post
3215
🎄 Here Before - Xmas🎅✨

🧑🏻‍🎄Models
+ [ Xmas 2D Illustration ] : strangerzonehf/Flux-Xmas-Illustration-LoRA
+ [ Xmas 3D Art ] : strangerzonehf/Flux-Xmas-3D-LoRA
+ [ Xmas Chocolate ] : strangerzonehf/Flux-Xmas-Chocolate-LoRA
+ [ Xmas Isometric Kit ] : strangerzonehf/Flux-Xmas-Isometric-Kit-LoRA
+ [ Xmas Realpix ] : strangerzonehf/Flux-Xmas-Realpix-LoRA
+ [ Xmas Anime ] : strangerzonehf/Flux-Anime-Xmas-LoRA

❄️Collections
+ [ Xmas Art ] : strangerzonehf/christmas-pack-6758b199487adafaddb68f82
+ [ Stranger Zone Collection ] : prithivMLmods/stranger-zone-collections-org-6737118adcf2cb40d66d0c7e

🥶Page
+ [ Stranger Zone ] : https://huggingface.co/strangerzonehf


.
.
.
@prithivMLmods 🤗
fdaudens 
posted an update 17 days ago
view post
Post
1207
🤝 Want to share your AI models while protecting your work? Licenses are key!

Fascinating to see that nearly 60% of models on the Hub use Apache & MIT licenses.

Explore the viz here: huggingface/open-source-ai-year-in-review-2024
AtAndDev 
posted an update 17 days ago
view post
Post
359
@s3nh Hey man check your discord! Got some news.
  • 4 replies
·
sayakpaul 
posted an update 17 days ago
view post
Post
1712
In the past seven days, the Diffusers team has shipped:

1. Two new video models
2. One new image model
3. Two new quantization backends
4. Three new fine-tuning scripts
5. Multiple fixes and library QoL improvements

Coffee on me if someone can guess 1 - 4 correctly.
  • 1 reply
·
fdaudens 
posted an update 17 days ago
view post
Post
1301
Did a fun experiment: What are the main themes emerging from the 100+ Nieman Journalism Lab predictions for 2025?

I used natural language processing to cluster and map them — really helps spot patterns that weren't obvious when reading predictions one by one. So what will shape journalism next year? A lot of AI and US politics (surprise!), but there's also this horizontal axis that spans from industry strategies to deep reflections on how to talk to the public.

Click any dot to explore the original prediction. What themes surprise/interest you the most?

👉 fdaudens/nieman_lab_2025_predictions_visualization

P.s.: I discovered that Nieman Lab's content is under Creative Commons license!
nataliaElv 
posted an update 18 days ago
view post
Post
1639
If you are still wondering how the FineWeb2 annotations are done, how to follow the guidelines or how Argilla works, this is your video!

I go through a few samples of the FineWeb2 dataset and classify them based on their educational content. Check it out!

https://www.youtube.com/watch?v=_-ORB4WAVGU