I'm super excited to release my first open-source text dataset:
WorldScenario 20K is a novel dataset of 20,000 synthetically generated multi-stakeholder scenarios designed to simulate real-world decision-making processes. Each scenario explores a unique environmental, societal, or economic issue.
I used the brand new meta-llama/Llama-3.3-70B-Instruct model to generate this dataset and I put the dataset through some post processing to clean and evaluate the dataset for diversity.
I'd appreciate some feedback and thoughts on my new release! Thanks!
if you can record the problem and share it there , or on the forums in your own post , please dont be shy because i'm not sure but i do think it helps π€π€π€
boomers still pick zenodo.org instead of huggingface ??? absolutely clownish nonsense , my random datasets have 30x more downloads and views than front page zenodos ... gonna write a comparison blog , but yeah... cringe.
scroll down for the datasets, still figuring out how to optimize for discoverability , i do think on that part it will be better than zenodo[dot}org , it would be nice to write a tutorial about that and compare : we already have more downloads than most zenodo datasets from famous researchers !
did you know that https://huggingface.co/lmms-lab released a new version of ππLlava on thursday ? Now it has π₯video understanding ! check it out ππ»
perhaps the largest single training dataset of high quality text to date of 7.8 trillion tokens in 35 European languages and code.
the best part : the data was correctly licenced so it's actually future-proof!
the completions model is really creative and instruct fine tuned version is very good also.
now you can use such models for multi-lingual enterprise applications with further finetunes , long response generation, structured outputs (coding) also works.