Automation of Aorta Measurement in Ultrasound Images

Env setup

Suggested hardware:

  • GPU: NVIDIA RTX 3090 or higher x1 (model training using PyTorch)
  • CPU: 11th Gen Intel(R) Core(TM) i9-11900KF @ 3.50GHz, or higher (model inference using OpenVINO)

Software stack:

  • OS: Ubuntu 20.04 LTS
  • Python: 3.8+
  • Python Env: conda
conda create -n aorta python=3.8 -y
conda activate aorta
pip install -r requirements.txt

Dataset

Steps to prepare the dataset:

  1. Collect images and import to CVAT

  2. Label the images in CVAT

  3. Export the labelled data in COCO 1.0 format using CVAT

    1. Go to CVAT > Projects page
    2. Click â‹® on aorta project
    3. Click Export dataset
      • Format: COCO 1.0
      • Save images: Yes
  4. Convert the new split data into YOLOv5 format

    python dataset.py coco2yolov5 [path/to/coco/input/dir] [path/to/yolov5/output/dir]
    

CVAT info, set up with docker compose

  • Server version: 2.3
  • Core version: 7.3.0
  • Canvas version: 2.16.1
  • UI version: 1.45.0

Dataset related scripts:

Training / Validation / Export

Model choice: Prefer yolov5-seg over yolov7-seg for training/validation/exporting models, performance comparison:

  • yolov5s-seg, fast transfer learning (~5-10 mins for 100 epochs using RTX 3090) and CPU inference
  • yolov7-seg, seems too heavy (slower inference using CPU)

Please refer to the repos of yolov5 seg & yolov7 seg for details of training/validation/exporting models.

yolov5-seg

Tested commit:

# Assume work dir is aorta/
git clone https://github.com/ultralytics/yolov5
cd yolov5
git checkout 23c492321290266810e08fa5ee9a23fc9d6a571f
git apply ../add_clearml_yolov5.patch

As of 2023, yolov5 seg doesn't support ClearML, but there is a PR for it. So we can manually update these files to use ClearML to track the training process, or apply add_clearml_yolov5.patch.

# Example
## Original training script
python segment/train.py --img 640 --batch 16 --epochs 3 --data coco128-seg.yaml --weights yolov5s-seg.pt --cache

## Updated training script with ClearML support
python segment/train.py --project [clearml_project_name] --name [task_name] --img 640 --batch 16 --epochs 3 --data coco128-seg.yaml --weights yolov5s-seg.pt --cache

Test video

  • Test video: Demo.mp4

  • Tested video (mp4): Converted from the original avi using ffmpeg:

    ffmpeg -i "Demo.avi" -vcodec h264 -acodec aac -b:v 500k -strict -2 Demo.mp4`
    

Demo (POC for 2022 Intel DevCup)

# run demo, using openvino model
python demo.py --video Demo.mp4 --model weights/yolov5s-v2/best_openvino_model/yolov5-640-v2.xml --plot-mask --img-size 640

# or run the demo using onnx model
python demo.py --video Demo.mp4 --model weights/yolov5s-v2/yolov5-640.onnx --plot-mask --img-size 640

# or run in the headless mode, generating a recording of the demo
./demo_headless.sh --video Demo.mp4 --model [path/to/model]

Deploy Pyinstaller EXE

Only tested on Windows 10:

pip install pyinstaller==5.9
pyinstaller demo.py
# (TODO) Replace the following manual steps with pyinstaller --add-data or spec file
#
# Manual copy files to dist\demo
# 1. Copy best_openvino_model folder to dist\demo\
# 2. Copy openvino files to dist\demo
# C:\Users\sa\miniforge3\envs\echo\Lib\site-packages\openvino\libs
#   plugins.xml
#   openvino_ir_frontend.dll
#   openvino_intel_cpu_plugin.dll
#   openvino_intel_gpu_plugin.dll

Troubleshooting: If the deployed EXE is not working with error ValueError: --plotlyjs argument is not a valid URL or file path:, please move the dist folder to another location with no special characters or Chinese in the path. Reference: https://github.com/plotly/Kaleido/issues/57

Paper

https://www.nature.com/articles/s41746-024-01269-4

Chiu, IM., Chen, TY., Zheng, YC. et al. Prospective clinical evaluation of deep learning for ultrasonographic screening of abdominal aortic aneurysms. npj Digit. Med. 7, 282 (2024).


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .