whisper-small-yo / README.md
oyemade's picture
End of training
a406b6c verified
|
raw
history blame
2.45 kB
metadata
language:
  - yo
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper Small Yo - Oyemade Oyemaja
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16
          type: mozilla-foundation/common_voice_16_1
          config: yo
          split: test
          args: yo
        metrics:
          - name: Wer
            type: wer
            value: 49.86116954143879

Whisper Small Yo - Oyemade Oyemaja

This model is a fine-tuned version of openai/whisper-small on the Common Voice 16 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1731
  • Wer Ortho: 70.4834
  • Wer: 49.8612

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2595 3.8462 500 0.7546 71.3700 52.0488
0.0312 7.6923 1000 0.9057 74.6210 53.1174
0.0134 11.5385 1500 1.0199 72.2090 51.7711
0.0059 15.3846 2000 1.0713 71.2842 51.6281
0.0087 19.2308 2500 1.1007 70.5787 50.1136
0.006 23.0769 3000 1.1568 70.8552 50.6100
0.0059 26.9231 3500 1.1327 69.0438 48.4645
0.0043 30.7692 4000 1.1731 70.4834 49.8612

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1