pvc-quality-swinv2-base

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window12-192-22k on the pvc figure images dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2396
  • Accuracy: 0.5317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7254 0.98 39 1.4826 0.4109
1.3316 1.99 79 1.2177 0.5136
1.0864 2.99 119 1.3006 0.4653
0.8572 4.0 159 1.2090 0.5015
0.7466 4.98 198 1.2150 0.5378
0.5986 5.99 238 1.4600 0.4955
0.4784 6.99 278 1.4131 0.5196
0.3525 8.0 318 1.5256 0.4985
0.3472 8.98 357 1.3883 0.5166
0.3281 9.81 390 1.5012 0.4955

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
11
Safetensors
Model size
86.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for p1atdev/pvc-quality-swinv2-base

Finetuned
(18)
this model

Dataset used to train p1atdev/pvc-quality-swinv2-base

Evaluation results