Built with Axolotl

See axolotl config

axolotl version: 0.4.1

# This is an axolotl config that allowed creation of a model knowledgeable about 19th century warfare.

# Rent a GPU with a compute provider like Vast.ai or Runpod
# (Make sure it is using the axolotl docker image --- winglian/axolotl:main-latest)
# Copy this file over to the rented instance, in the /workspace/axolotl directory
# If running on a single-GPU setup, you must run:
# conda install -c conda-forge mpi4py mpich
# Then run this command from the /workspace/axolotl directory:
# accelerate launch --use_deepspeed -m axolotl.cli.train axolotl_config_19th_century_military_llama_3_jun_29.yaml

# If using GaLore, do not use deepspeed

# (to copy files over to a rented GPU instance, you'll have to use SSH to Secure CoPy files over from your machine to the rented one. This is what such a command might look like, adapt it to your needs)
# scp -P 40001 -r ./ [email protected]:/workspace/axolotl/

base_model: NousResearch/Meta-Llama-3.1-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: json
    data_files: pretraining.jsonl
    ds_type: json
    type: completion
  - path: json
    data_files: simplified_data_rag.jsonl
    ds_type: json
    type: sharegpt
    conversation: chatml
  - path: json
    data_files: simplified_data_no_rag.jsonl
    ds_type: json
    type: sharegpt
    conversation: chatml

dataset_prepared_path: last_run_prepared
output_dir: ./pg_bot

sequence_len: 4500
sample_packing: true
pad_to_sequence_len: true

wandb_project: pg-bot-run2
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 6
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
noisy_embedding_alpha: 0 # no noisy embedding to ensure maximal memorization 

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint: 
logging_steps: 1
xformers_attention:
flash_attention: true

chat_template: chatml

warmup_steps: 10
auto_resume_from_checkpoints: false
eval_steps: 10
saves_per_epoch: 1
eval_sample_packing: false
save_total_limit: 4
debug:
deepspeed: deepspeed_configs/zero2.json
special_tokens:
  pad_token: "<|end_of_text|>"

pg_bot

This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 12
  • total_eval_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 6

Training results

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for panterarocks49/paul-graham-llama-3.1

Finetuned
(3)
this model