whisper-NST2-unfreeze-constanti-low-lr

This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3562
  • Wer: 8.5519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 96
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1901 0.05 1000 0.3069 14.8233
0.1323 0.1 2000 0.2687 11.2885
0.1137 0.15 3000 0.2620 10.8324
0.1022 0.2 4000 0.2976 9.0080
0.0937 0.25 5000 0.2584 9.5781
0.0875 0.3 6000 0.2704 20.2965
0.0592 1.05 7000 0.2751 9.0080
0.0488 1.1 8000 0.2778 8.6659
0.0475 1.15 9000 0.2792 9.4641
0.0439 1.2 10000 0.2880 8.3238
0.0425 1.25 11000 0.2954 8.5519
0.0416 1.3 12000 0.2896 20.2965
0.0289 2.05 13000 0.2990 7.9818
0.0229 2.1 14000 0.3027 7.4116
0.0248 2.15 15000 0.2968 8.6659
0.0225 2.2 16000 0.3100 8.5519
0.0222 2.25 17000 0.3132 9.3501
0.0219 2.3 18000 0.3230 7.6397
0.0162 3.04 19000 0.3380 9.8062
0.0132 3.09 20000 0.3562 8.5519

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.