raijin / README.md
“pharaouk”
a
bdadac3
---
license: other
base_model: microsoft/phi-1_5
tags:
- generated_from_trainer
model-index:
- name: phi-sft-outC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# phi-sft-outC
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7401
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8712 | 0.01 | 1 | 0.9999 |
| 1.0178 | 0.21 | 30 | 0.9624 |
| 1.0656 | 0.41 | 60 | 0.8691 |
| 0.8251 | 0.62 | 90 | 0.8188 |
| 0.8962 | 0.82 | 120 | 0.7913 |
| 0.9011 | 1.03 | 150 | 0.7756 |
| 0.8312 | 1.23 | 180 | 0.7655 |
| 0.7654 | 1.44 | 210 | 0.7585 |
| 1.0281 | 1.64 | 240 | 0.7522 |
| 0.8819 | 1.85 | 270 | 0.7480 |
| 0.8851 | 2.05 | 300 | 0.7453 |
| 0.8821 | 2.26 | 330 | 0.7434 |
| 0.7589 | 2.47 | 360 | 0.7423 |
| 0.7541 | 2.67 | 390 | 0.7411 |
| 0.9416 | 2.88 | 420 | 0.7406 |
| 0.8544 | 3.08 | 450 | 0.7403 |
| 0.8682 | 3.29 | 480 | 0.7402 |
| 0.8589 | 3.49 | 510 | 0.7401 |
| 0.7781 | 3.7 | 540 | 0.7402 |
| 0.8715 | 3.9 | 570 | 0.7401 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0