metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1267
- loss:CoSENTLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Give me suggestions for a high-quality DSLR camera
sentences:
- faq query
- subscription query
- faq query
- source_sentence: Aidez-moi à configurer une nouvelle adresse e-mail
sentences:
- order query
- faq query
- feedback query
- source_sentence: Как я могу изменить адрес доставки?
sentences:
- support query
- product query
- product query
- source_sentence: ساعدني في حذف الملفات الغير مرغوب فيها من هاتفي
sentences:
- technical support query
- product recommendation
- faq query
- source_sentence: Envoyez-moi la politique de garantie de ce produit
sentences:
- faq query
- account query
- faq query
pipeline_tag: sentence-similarity
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: MiniLM dev
type: MiniLM-dev
metrics:
- type: pearson_cosine
value: 0.6538226572138826
name: Pearson Cosine
- type: spearman_cosine
value: 0.6336766646599241
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5799895241429639
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5525776786782183
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5732001104236694
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5394971970682657
name: Spearman Euclidean
- type: pearson_dot
value: 0.6359725423136287
name: Pearson Dot
- type: spearman_dot
value: 0.6237936341101822
name: Spearman Dot
- type: pearson_max
value: 0.6538226572138826
name: Pearson Max
- type: spearman_max
value: 0.6336766646599241
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: MiniLM test
type: MiniLM-test
metrics:
- type: pearson_cosine
value: 0.6682368113711722
name: Pearson Cosine
- type: spearman_cosine
value: 0.6222011918428743
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5714617063306076
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5481366191719228
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5726946277850402
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.549312247309557
name: Spearman Euclidean
- type: pearson_dot
value: 0.6396412507506479
name: Pearson Dot
- type: spearman_dot
value: 0.6107388175009413
name: Spearman Dot
- type: pearson_max
value: 0.6682368113711722
name: Pearson Max
- type: spearman_max
value: 0.6222011918428743
name: Spearman Max
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("philipp-zettl/MiniLM-similarity-small")
# Run inference
sentences = [
'Envoyez-moi la politique de garantie de ce produit',
'faq query',
'account query',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
MiniLM-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6538 |
spearman_cosine | 0.6337 |
pearson_manhattan | 0.58 |
spearman_manhattan | 0.5526 |
pearson_euclidean | 0.5732 |
spearman_euclidean | 0.5395 |
pearson_dot | 0.636 |
spearman_dot | 0.6238 |
pearson_max | 0.6538 |
spearman_max | 0.6337 |
Semantic Similarity
- Dataset:
MiniLM-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6682 |
spearman_cosine | 0.6222 |
pearson_manhattan | 0.5715 |
spearman_manhattan | 0.5481 |
pearson_euclidean | 0.5727 |
spearman_euclidean | 0.5493 |
pearson_dot | 0.6396 |
spearman_dot | 0.6107 |
pearson_max | 0.6682 |
spearman_max | 0.6222 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,267 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 10.77 tokens
- max: 18 tokens
- min: 4 tokens
- mean: 5.31 tokens
- max: 6 tokens
- min: 0.0
- mean: 0.67
- max: 1.0
- Samples:
sentence1 sentence2 score Get information on the next art exhibition
product query
0.0
Show me how to update my profile
product query
0.0
Покажите мне доступные варианты полетов в Турцию
faq query
0.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 159 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 10.65 tokens
- max: 17 tokens
- min: 4 tokens
- mean: 5.35 tokens
- max: 6 tokens
- min: 0.0
- mean: 0.67
- max: 1.0
- Samples:
sentence1 sentence2 score Sende mir die Bestellbestätigung per E-Mail
order query
0.0
How do I add a new payment method?
faq query
1.0
No puedo conectar mi impresora, ¿puedes ayudarme?
support query
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | MiniLM-dev_spearman_cosine | MiniLM-test_spearman_cosine |
---|---|---|---|---|---|
0.0629 | 10 | 6.2479 | 2.5890 | 0.1448 | - |
0.1258 | 20 | 4.3549 | 2.2787 | 0.1965 | - |
0.1887 | 30 | 3.5969 | 2.0104 | 0.2599 | - |
0.2516 | 40 | 2.4979 | 1.7269 | 0.3357 | - |
0.3145 | 50 | 2.5551 | 1.5747 | 0.4439 | - |
0.3774 | 60 | 3.1446 | 1.4892 | 0.4750 | - |
0.4403 | 70 | 2.1353 | 1.5305 | 0.4662 | - |
0.5031 | 80 | 2.9341 | 1.3718 | 0.4848 | - |
0.5660 | 90 | 2.8709 | 1.2469 | 0.5316 | - |
0.6289 | 100 | 2.1367 | 1.2558 | 0.5436 | - |
0.6918 | 110 | 2.2735 | 1.2939 | 0.5392 | - |
0.7547 | 120 | 2.8646 | 1.1206 | 0.5616 | - |
0.8176 | 130 | 3.3204 | 1.0213 | 0.5662 | - |
0.8805 | 140 | 0.8989 | 0.9866 | 0.5738 | - |
0.9434 | 150 | 0.0057 | 0.9961 | 0.5674 | - |
1.0063 | 160 | 0.0019 | 1.0111 | 0.5674 | - |
1.0692 | 170 | 0.4617 | 1.0275 | 0.5747 | - |
1.1321 | 180 | 0.0083 | 1.0746 | 0.5732 | - |
1.1950 | 190 | 0.5048 | 1.0968 | 0.5753 | - |
1.2579 | 200 | 0.0002 | 1.0840 | 0.5738 | - |
1.3208 | 210 | 0.07 | 1.0364 | 0.5753 | - |
1.3836 | 220 | 0.0 | 0.9952 | 0.5750 | - |
1.4465 | 230 | 0.0 | 0.9922 | 0.5744 | - |
1.5094 | 240 | 0.0 | 0.9923 | 0.5726 | - |
1.0126 | 250 | 0.229 | 0.9930 | 0.5729 | - |
1.0755 | 260 | 2.2061 | 0.9435 | 0.5880 | - |
1.1384 | 270 | 2.7711 | 0.8892 | 0.6078 | - |
1.2013 | 280 | 0.7528 | 0.8886 | 0.6148 | - |
1.2642 | 290 | 0.386 | 0.8927 | 0.6162 | - |
1.3270 | 300 | 0.8902 | 0.8710 | 0.6267 | - |
1.3899 | 310 | 0.9534 | 0.8429 | 0.6337 | - |
1.4403 | 318 | - | - | - | 0.6222 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}