Fine-tuned Llama 2 on sheperd

from datasets import load_dataset 
from random import randrange
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer


output_dir = "philschmid/shepherd-2-hf-int4"

# load base LLM model and tokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
    output_dir,
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16,
    load_in_4bit=True,
) 
tokenizer = AutoTokenizer.from_pretrained(output_dir)


# Load dataset from the hub and get a sample
dataset = load_dataset("philschmid/meta-shepherd-human-data", split="train")
sample = dataset[randrange(len(dataset))]

prompt = f"""### Question: {sample['question']}

### Answer:
{sample['answer']}

### Feedback:
"""

input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
# with torch.inference_mode():
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.9)

print(prompt[:-14])
print("---"*35)
print(f"### Generated Feedback:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
print(f"### Ground truth Feedback:\n{sample['feedback']}")

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.4.0
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.