Contextualized, fine-grained hate speech detection
Try our demo.
Model trained to detect hate speech comments in news articles. Base model is BETO, a Spanish BERT pre-trained model. The task the model was trained on is a multilabel classification problem, where each input have a label for each of the considered groups:
Label | Description |
---|---|
WOMEN | Against women |
LGBTI | Against LGBTI |
RACISM | Racist |
CLASS | Classist |
POLITICS | Because of politics |
DISABLED | Against disabled |
APPEARANCE | Against people because their appearance |
CRIMINAL | Against criminals |
There is an extra label CALLS
, which represents whether a comment is a call to violent action or not.
Input
The model was trained taking into account both the comment and the context. To feed this model, use the template
TEXT [SEP] CONTEXT
where [SEP]
is the special token used to separate the comment from the context.
Example
If we want to analyze
Comment: Hay que matarlos a todos!!! Nos infectaron con su virus!
Context: China prohibi贸 la venta de perros y gatos para consumo humano
The input should be
Hay que matarlos a todos!!! Nos infectaron con su virus! [SEP] China prohibi贸 la venta de perros y gatos para consumo humano
Usage:
Sadly, the huggingface
pipeline does not support multi-label classification, so this model cannot be tested directly in the side widget.
To use it, you can try our demo. If you want to use it with your own code, use the following snippet:
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_name = "piubamas/beto-contextualized-hate-speech"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
id2label = [model.config.id2label[k] for k in range(len(model.config.id2label))]
def predict(*args):
encoding = tokenizer.encode_plus(*args)
inputs = {
k:torch.LongTensor(encoding[k]).reshape(1, -1) for k in {"input_ids", "attention_mask", "token_type_ids"}
}
output = model.forward(
**inputs
)
chars = list(zip(id2label, list(output.logits[0].detach().cpu().numpy() > 0)))
return [char for char, pred in chars if pred]
context = "China proh铆be la cr铆a de perros para consumo humano")
text = "Chinos hdrmp hay que matarlos a todos"
prediction = predict(text, context)
Citation
@article{perez2023assessing,
title={Assessing the impact of contextual information in hate speech detection},
author={P{\'e}rez, Juan Manuel and Luque, Franco M and Zayat, Demian and Kondratzky, Mart{\'\i}n and Moro, Agust{\'\i}n and Serrati, Pablo Santiago and Zajac, Joaqu{\'\i}n and Miguel, Paula and Debandi, Natalia and Gravano, Agust{\'\i}n and others},
journal={IEEE Access},
volume={11},
pages={30575--30590},
year={2023},
publisher={IEEE}
}
- Downloads last month
- 19,171