food101-vit-base-patch16-224-in21k
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the food101 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3853
- Accuracy: 0.908
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8312 | 1.0 | 9469 | 0.6893 | 0.8576 |
0.6401 | 2.0 | 18938 | 0.4571 | 0.8784 |
0.7021 | 3.0 | 28407 | 0.4081 | 0.8905 |
0.8365 | 4.0 | 37876 | 0.3962 | 0.8946 |
0.3562 | 5.0 | 47345 | 0.3932 | 0.8954 |
0.3552 | 6.0 | 56814 | 0.3876 | 0.9004 |
0.3962 | 7.0 | 66283 | 0.3854 | 0.9049 |
0.4242 | 8.0 | 75752 | 0.3865 | 0.9066 |
0.2785 | 9.0 | 85221 | 0.3867 | 0.9070 |
0.3446 | 10.0 | 94690 | 0.3853 | 0.908 |
Framework versions
- Transformers 4.38.0
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.15.2
- Downloads last month
- 5
Model tree for pkr7098/food101-vit-base-patch16-224-in21k
Base model
google/vit-base-patch16-224-in21k