Text-to-Image
Diffusers
flux
flux-diffusers
simpletuner
Not-For-All-Audiences
lora
template:sd-lora
lycoris
metadata
license: other
base_model: FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
bssprshps car interior objects, black background, vertically positioned,
antenna
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
- text: >-
bssprshps car interior objects, car dashboard cover, gray, car interior
background, on top of the dashboard, side view
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_2_0.png
- text: >-
bssprshps car interior objects, windshield phone mount, on top of a silky
cloth, side view, silky cloth background
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_3_0.png
- text: >-
bssprshps car interior objects, windshield phone mount, car interior
background, sticking on the windshield, isometric view
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_4_0.png
- text: >-
snwypnswhtlbs dog, front view, sitting position, tongue is out, collar on
its neck and leash is lifted up, grass field on the back, sitting on a
cement ground
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_5_0.png
- text: >-
snwypnswhtlbs dog, front view, out-of-focus background, laying on a white
blanket, red ribbon on its neck
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_6_0.png
- text: >-
snwypnswhtlbs dog, laying on the water, tongue is out, out-of-focus
background, pond background, facing on the right side
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_7_0.png
- text: >-
snwypnswhtlbs dog, running in the water, out-of-focus background, lake
background, running to the left, side view
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_8_0.png
- text: bssprshps cooler, brown and black, white background, front view
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_9_0.png
- text: >-
bssprshps cooler, opened, red, front view, garden background, on the
ground, filled with drinks and fruits and bread
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_10_0.png
- text: >-
bssprshps cooler, front view, boat on water background, on top of a boat,
light skinned person closing the box
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_11_0.png
- text: bssprshps cooler, turquoise, opened, isometric view, white background
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_12_0.png
- text: >-
dptyq perfume, white background, next to a red coral and oval glass,
corail oscuro scent, product is laying
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_13_0.png
- text: >-
dptyq perfume, white background, product is laying, bottle cap is next to
the product, top view, doson scent, perfume bottle is open, oval bottle
and cylinder-shaped cap
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_14_0.png
- text: >-
dptyq perfume, oval bottle and cylinder-shaped cap, product is laying,
leau papier scent, on the floor, next to a writing materials
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_15_0.png
- text: >-
dptyq perfume, oval bottle and cylinder-shaped cap, leau papier scent,
product is laying, top view, next to the product branding
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_16_0.png
- text: bssprshps hat, orange, white background, isometric view, corduroy
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_17_0.png
- text: >-
bssprshps hat, brown, on top of the couch, front view, navy blue couch,
text only logo
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_18_0.png
- text: bssprshps hat, sky blue, black background, isometric view
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_19_0.png
- text: bssprshps hat, camo brown and green, black background, isometric view
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_20_0.png
- text: dptyq perfume set, white background, cylinder-shaped bottles, front view
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_21_0.png
- text: dptyq perfume set, white background, cylinder-shaped bottles, front view
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_22_0.png
- text: >-
dptyq perfume set, front view, on the packaging box, next to the packaging
cover, black background
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_23_0.png
- text: >-
dptyq perfume set, white background, front view, on the packaging box,
next to the packaging cover
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_24_0.png
- text: >-
dptyq car diffuser, white background, amber scent, back view, next to the
product packaging
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_25_0.png
- text: >-
dptyq car diffuser, white background, roses scent, back view, next to the
product packaging
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_26_0.png
- text: dptyq car diffuser, white background, back view
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_27_0.png
- text: >-
dptyq car diffuser, white background, back view, ginger scent, next to the
product packaging
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_28_0.png
- text: >-
bssprshps head net, worn by a tan-skinned woman, worn by a dark-skinned
man, out-of-focus background, front view, taking a selfie, wearing a camo
hat and a teal and gray striped shirt, wearing a woven hat and a flannel
shirt
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_29_0.png
- text: >-
bssprshps head net, worn by a mannequin head, side view, white background,
wearing a white hat
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_30_0.png
- text: >-
bssprshps head net, worn by a light-skinned man, side view, white
background, wearing a black baseball cap and a white shirt
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_31_0.png
- text: >-
bssprshps head net, out-of-focus background, worn by a light-skinned
woman, side view, green, wearing a knitted hat, glasses, and a dark shirt
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_32_0.png
- text: a photo of a daisy
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_33_0.png
y
This is a LyCORIS adapter derived from FLUX.1-dev.
The main validation prompt used during training was:
a photo of a daisy
Validation settings
- CFG:
3.5
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
69
- Resolution:
1024x1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 30
- Training steps: 3000
- Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 0
- Max grad norm: 2.0
- Effective batch size: 8
- Micro-batch size: 2
- Gradient accumulation steps: 1
- Number of GPUs: 4
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
- Optimizer: optimi-stableadamwweight_decay=1e-3
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 5.0%
LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1,
"linear_dim": 1000000,
"linear_alpha": 1,
"factor": 12,
"init_lokr_norm": 0.001,
"apply_preset": {
"target_module": [
"FluxTransformerBlock",
"FluxSingleTransformerBlock"
],
"module_algo_map": {
"Attention": {
"factor": 12
},
"FeedForward": {
"factor": 6
}
}
}
}
Datasets
dptyqxbssprshps_flat-512
- Repeats: 0
- Total number of images: ~216
- Total number of aspect buckets: 2
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
dptyqxbssprshps_flat-768
- Repeats: 0
- Total number of images: ~180
- Total number of aspect buckets: 10
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
dptyqxbssprshps_flat-1024
- Repeats: 1
- Total number of images: ~152
- Total number of aspect buckets: 11
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'FLUX.1-dev'
adapter_repo_id = 'playerzer0x/y'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "a photo of a daisy"
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(69),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")