pradanaadn's picture
End of training
9cf5307 verified
metadata
license: other
base_model: google/mobilenet_v2_1.0_224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: mobilenet_v2-activity-recognition
    results: []

mobilenet_v2-activity-recognition

This model is a fine-tuned version of google/mobilenet_v2_1.0_224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0450
  • Accuracy: 0.6718

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.8136 0.1778 10 2.7919 0.0733
2.8041 0.3556 20 2.7240 0.1043
2.6841 0.5333 30 2.6304 0.1421
2.5799 0.7111 40 2.4856 0.2497
2.4537 0.8889 50 2.3143 0.3431
2.2593 1.0667 60 2.1425 0.4005
2.0671 1.2444 70 1.9995 0.4360
1.8958 1.4222 80 1.8545 0.4683
1.7891 1.6 90 1.7437 0.4939
1.6659 1.7778 100 1.6373 0.5317
1.6006 1.9556 110 1.5372 0.5568
1.4752 2.1333 120 1.4766 0.5705
1.3654 2.3111 130 1.4303 0.5862
1.3452 2.4889 140 1.3513 0.6048
1.3134 2.6667 150 1.3941 0.5663
1.2905 2.8444 160 1.2859 0.6159
1.2201 3.0222 170 1.2661 0.6174
1.1225 3.2 180 1.2662 0.6181
1.0991 3.3778 190 1.1911 0.6392
1.1171 3.5556 200 1.2437 0.6142
1.0643 3.7333 210 1.1952 0.6318
1.1095 3.9111 220 1.1333 0.6519
1.0284 4.0889 230 1.1642 0.6362
0.9896 4.2667 240 1.1140 0.6519
0.9507 4.4444 250 1.0811 0.6672
0.9437 4.6222 260 1.0729 0.6652
0.9522 4.8 270 1.0724 0.6650
0.953 4.9778 280 1.0645 0.6713
0.8857 5.1556 290 1.1049 0.6508
0.907 5.3333 300 1.0808 0.6580
0.8723 5.5111 310 1.0437 0.6766
0.824 5.6889 320 1.0227 0.6801
0.846 5.8667 330 1.0186 0.6746
0.845 6.0444 340 1.0166 0.6805
0.8015 6.2222 350 1.0379 0.6720
0.8798 6.4 360 0.9889 0.6879
0.8076 6.5778 370 1.0059 0.6829
0.8105 6.7556 380 1.0098 0.6783
0.7414 6.9333 390 0.9801 0.6859
0.7869 7.1111 400 0.9624 0.6993
0.7728 7.2889 410 1.0938 0.6547
0.7762 7.4667 420 0.9867 0.6825
0.7769 7.6444 430 1.0512 0.6670
0.7563 7.8222 440 1.0346 0.6770
0.762 8.0 450 1.0647 0.6597
0.726 8.1778 460 1.0134 0.6812
0.7515 8.3556 470 0.9921 0.6787
0.7034 8.5333 480 1.0043 0.6833
0.7426 8.7111 490 0.9721 0.6936
0.7225 8.8889 500 1.0450 0.6718
0.7372 9.0667 510 0.9957 0.6812
0.7238 9.2444 520 0.9928 0.6894
0.7824 9.4222 530 1.0413 0.6753
0.7218 9.6 540 0.9717 0.6877
0.6976 9.7778 550 0.9839 0.6859
0.7288 9.9556 560 1.0229 0.6728

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1