Finetuning Llama-7b on text-to-sql task

This model is a fine-tuned version of codellama/CodeLlama-7b-hf on b-mc2/sql-create-context.

Training and evaluation data

The model is trained on 10,000 random samples from b-mc2/sql-create-context. It is trained in a manner described by Phil Schmid here.

Training hyperparameters

Hyperparameter Value
learning_rate 0.0002
train_batch_size 50
eval_batch_size 8
seed 42
gradient_accumulation_steps 2
total_train_batch_size 100
optimizer Adam with betas=(0.9,0.999) and epsilon=1e-08
lr_scheduler_type constant
lr_scheduler_warmup_ratio 0.03
num_epochs 3

Training results

Train loss

Framework versions

  • PEFT 0.7.2.dev0
  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.2
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for pratikdoshi/finetune-llama-7b-text-to-sql

Adapter
(413)
this model