|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- Qwen/Qwen2-VL-2B-Instruct |
|
pipeline_tag: image-text-to-text |
|
library_name: transformers |
|
tags: |
|
- text-generation-inference |
|
- Omni |
|
- Math |
|
- Reasoner |
|
- Qwen-Base |
|
--- |
|
![omni.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Ai2-yZdpYmAhiU9HBu6gr.png) |
|
|
|
# **Omni-Reasoner-2B** |
|
|
|
*Omni-Reasoner-2B* is based on Qwen2VL and is designed for mathematical and content-based explanations. It excels in providing detailed reasoning about content and solving math problems with proper content formatting. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively. |
|
|
|
# **Use it with Transformers** |
|
|
|
*Before using, ensure that the required libraries are successfully installed in the environment.* |
|
|
|
!pip install gradio spaces transformers accelerate numpy requests torch torchvision qwen-vl-utils av ipython reportlab fpdf python-docx pillow huggingface_hub |
|
|
|
*ChemQwen With Inference Documentation, **Before using, make sure that the `hf_token` is provided in the login field in the code below.*** |
|
|
|
# **Sample Inference with Doc** |
|
|
|
![omnip.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/53LkSMzAkIl1Yxc2yfLwb.png) |
|
|
|
📒*Demo:* https://huggingface.co/prithivMLmods/Omni-Reasoner-2B/blob/main/Omni-R/omni-r.ipynb |
|
|
|
```python |
|
|
|
# Authenticate with Hugging Face |
|
from huggingface_hub import login |
|
|
|
# Log in to Hugging Face using the provided token |
|
hf_token = '----xxxxx----' |
|
login(hf_token) |
|
|
|
# Demo |
|
import gradio as gr |
|
import spaces |
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer |
|
from qwen_vl_utils import process_vision_info |
|
import torch |
|
from PIL import Image |
|
import os |
|
import uuid |
|
import io |
|
from threading import Thread |
|
from reportlab.lib.pagesizes import A4 |
|
from reportlab.lib.styles import getSampleStyleSheet |
|
from reportlab.lib import colors |
|
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer |
|
from reportlab.pdfbase import pdfmetrics |
|
from reportlab.pdfbase.ttfonts import TTFont |
|
import docx |
|
from docx.enum.text import WD_ALIGN_PARAGRAPH |
|
|
|
# Define model options |
|
MODEL_OPTIONS = { |
|
"Omni-Reasoner": "prithivMLmods/Omni-Reasoner-2B", |
|
} |
|
|
|
# Preload models and processors into CUDA |
|
models = {} |
|
processors = {} |
|
for name, model_id in MODEL_OPTIONS.items(): |
|
print(f"Loading {name}...") |
|
models[name] = Qwen2VLForConditionalGeneration.from_pretrained( |
|
model_id, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 |
|
).to("cuda").eval() |
|
processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
image_extensions = Image.registered_extensions() |
|
|
|
def identify_and_save_blob(blob_path): |
|
"""Identifies if the blob is an image and saves it.""" |
|
try: |
|
with open(blob_path, 'rb') as file: |
|
blob_content = file.read() |
|
try: |
|
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image |
|
extension = ".png" # Default to PNG for saving |
|
media_type = "image" |
|
except (IOError, SyntaxError): |
|
raise ValueError("Unsupported media type. Please upload a valid image.") |
|
|
|
filename = f"temp_{uuid.uuid4()}_media{extension}" |
|
with open(filename, "wb") as f: |
|
f.write(blob_content) |
|
|
|
return filename, media_type |
|
|
|
except FileNotFoundError: |
|
raise ValueError(f"The file {blob_path} was not found.") |
|
except Exception as e: |
|
raise ValueError(f"An error occurred while processing the file: {e}") |
|
|
|
@spaces.GPU |
|
def qwen_inference(model_name, media_input, text_input=None): |
|
"""Handles inference for the selected model.""" |
|
model = models[model_name] |
|
processor = processors[model_name] |
|
|
|
if isinstance(media_input, str): |
|
media_path = media_input |
|
if media_path.endswith(tuple([i for i in image_extensions.keys()])): |
|
media_type = "image" |
|
else: |
|
try: |
|
media_path, media_type = identify_and_save_blob(media_input) |
|
except Exception as e: |
|
raise ValueError("Unsupported media type. Please upload a valid image.") |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": media_type, |
|
media_type: media_path |
|
}, |
|
{"type": "text", "text": text_input}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, _ = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
).to("cuda") |
|
|
|
streamer = TextIteratorStreamer( |
|
processor.tokenizer, skip_prompt=True, skip_special_tokens=True |
|
) |
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
# Remove <|im_end|> or similar tokens from the output |
|
buffer = buffer.replace("<|im_end|>", "") |
|
yield buffer |
|
|
|
def format_plain_text(output_text): |
|
"""Formats the output text as plain text without LaTeX delimiters.""" |
|
# Remove LaTeX delimiters and convert to plain text |
|
plain_text = output_text.replace("\\(", "").replace("\\)", "").replace("\\[", "").replace("\\]", "") |
|
return plain_text |
|
|
|
def generate_document(media_path, output_text, file_format, font_size, line_spacing, alignment, image_size): |
|
"""Generates a document with the input image and plain text output.""" |
|
plain_text = format_plain_text(output_text) |
|
if file_format == "pdf": |
|
return generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size) |
|
elif file_format == "docx": |
|
return generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size) |
|
|
|
def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size): |
|
"""Generates a PDF document.""" |
|
filename = f"output_{uuid.uuid4()}.pdf" |
|
doc = SimpleDocTemplate( |
|
filename, |
|
pagesize=A4, |
|
rightMargin=inch, |
|
leftMargin=inch, |
|
topMargin=inch, |
|
bottomMargin=inch |
|
) |
|
styles = getSampleStyleSheet() |
|
styles["Normal"].fontSize = int(font_size) |
|
styles["Normal"].leading = int(font_size) * line_spacing |
|
styles["Normal"].alignment = { |
|
"Left": 0, |
|
"Center": 1, |
|
"Right": 2, |
|
"Justified": 4 |
|
}[alignment] |
|
|
|
story = [] |
|
|
|
# Add image with size adjustment |
|
image_sizes = { |
|
"Small": (200, 200), |
|
"Medium": (400, 400), |
|
"Large": (600, 600) |
|
} |
|
img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1]) |
|
story.append(img) |
|
story.append(Spacer(1, 12)) |
|
|
|
# Add plain text output |
|
text = Paragraph(plain_text, styles["Normal"]) |
|
story.append(text) |
|
|
|
doc.build(story) |
|
return filename |
|
|
|
def generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size): |
|
"""Generates a DOCX document.""" |
|
filename = f"output_{uuid.uuid4()}.docx" |
|
doc = docx.Document() |
|
|
|
# Add image with size adjustment |
|
image_sizes = { |
|
"Small": docx.shared.Inches(2), |
|
"Medium": docx.shared.Inches(4), |
|
"Large": docx.shared.Inches(6) |
|
} |
|
doc.add_picture(media_path, width=image_sizes[image_size]) |
|
doc.add_paragraph() |
|
|
|
# Add plain text output |
|
paragraph = doc.add_paragraph() |
|
paragraph.paragraph_format.line_spacing = line_spacing |
|
paragraph.paragraph_format.alignment = { |
|
"Left": WD_ALIGN_PARAGRAPH.LEFT, |
|
"Center": WD_ALIGN_PARAGRAPH.CENTER, |
|
"Right": WD_ALIGN_PARAGRAPH.RIGHT, |
|
"Justified": WD_ALIGN_PARAGRAPH.JUSTIFY |
|
}[alignment] |
|
run = paragraph.add_run(plain_text) |
|
run.font.size = docx.shared.Pt(int(font_size)) |
|
|
|
doc.save(filename) |
|
return filename |
|
|
|
# CSS for output styling |
|
css = """ |
|
#output { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
.submit-btn { |
|
background-color: #cf3434 !important; |
|
color: white !important; |
|
} |
|
.submit-btn:hover { |
|
background-color: #ff2323 !important; |
|
} |
|
.download-btn { |
|
background-color: #35a6d6 !important; |
|
color: white !important; |
|
} |
|
.download-btn:hover { |
|
background-color: #22bcff !important; |
|
} |
|
""" |
|
|
|
# Gradio app setup |
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("# ChemQwen Chemical Identifier") |
|
|
|
with gr.Tab(label="Image Input"): |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_choice = gr.Dropdown( |
|
label="Model Selection", |
|
choices=list(MODEL_OPTIONS.keys()), |
|
value="Omni-Reasoner" |
|
) |
|
input_media = gr.File( |
|
label="Upload Image", type="filepath" |
|
) |
|
text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...") |
|
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn") |
|
|
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Output Text", lines=10) |
|
plain_text_output = gr.Textbox(label="Standardized Plain Text", lines=10) |
|
|
|
submit_btn.click( |
|
qwen_inference, [model_choice, input_media, text_input], [output_text] |
|
).then( |
|
lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output] |
|
) |
|
|
|
# Add examples directly usable by clicking |
|
with gr.Row(): |
|
with gr.Column(): |
|
line_spacing = gr.Dropdown( |
|
choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0], |
|
value=1.5, |
|
label="Line Spacing" |
|
) |
|
font_size = gr.Dropdown( |
|
choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"], |
|
value="18", |
|
label="Font Size" |
|
) |
|
alignment = gr.Dropdown( |
|
choices=["Left", "Center", "Right", "Justified"], |
|
value="Justified", |
|
label="Text Alignment" |
|
) |
|
image_size = gr.Dropdown( |
|
choices=["Small", "Medium", "Large"], |
|
value="Small", |
|
label="Image Size" |
|
) |
|
file_format = gr.Radio(["pdf", "docx"], label="File Format", value="pdf") |
|
get_document_btn = gr.Button(value="Get Document", elem_classes="download-btn") |
|
|
|
get_document_btn.click( |
|
generate_document, [input_media, output_text, file_format, font_size, line_spacing, alignment, image_size], gr.File(label="Download Document") |
|
) |
|
|
|
demo.launch(debug=True) |
|
``` |
|
|
|
# **Key Enhancements** |
|
1. **Advanced Reasoning Capabilities**: |
|
- Enhanced ability to perform long-form reasoning for complex mathematical and content-based queries. |
|
- Supports detailed step-by-step explanations for problem-solving and content formatting. |
|
|
|
2. **Multi-Modal Integration**: |
|
- Combines visual and textual understanding to interpret and analyze diverse input formats (images, text, and mathematical expressions). |
|
|
|
3. **Conversational Workflow**: |
|
- Offers a natural conversational interface for interactive problem-solving and explanations. |
|
|
|
4. **Content Formatting**: |
|
- Improves content presentation with structured formatting for better readability and understanding. |
|
|
|
# **Intended Use** |
|
1. **Educational Assistance**: |
|
- Ideal for students and educators for solving mathematical problems, creating structured explanations, and formatting educational content. |
|
|
|
2. **Research Support**: |
|
- Assists researchers in generating in-depth explanations and interpreting complex visual and textual data. |
|
|
|
3. **Content Creation**: |
|
- Enhances the generation of well-formatted documents, reports, and presentations. |
|
|
|
4. **General Purpose Assistance**: |
|
- Useful for applications requiring long-form reasoning and conversational AI in domains like tutoring, customer support, and technical writing. |
|
|
|
# **Limitations** |
|
1. **Domain-Specific Expertise**: |
|
- May struggle with niche or highly specialized topics outside its training domain. |
|
|
|
2. **Error in Long-Chain Reasoning**: |
|
- In rare cases, it might generate incorrect or inconsistent solutions for highly complex problems. |
|
|
|
3. **Visual Data Limitations**: |
|
- Performance may depend on the quality and clarity of visual inputs (e.g., low-resolution images may reduce accuracy). |
|
|
|
4. **Formatting Constraints**: |
|
- While effective, complex or heavily customized formatting tasks may require manual adjustments. |
|
|
|
5. **Dependence on Context**: |
|
- The model relies on well-structured input to produce accurate and coherent outputs; ambiguous or incomplete prompts may lead to suboptimal results. |