resnet-101-finetuned_resnet101-adam-optimizer5e-4-autotags

This model is a fine-tuned version of microsoft/resnet-101 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2477
  • Accuracy: 0.9267

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.6033 0.99 65 2.5693 0.1381
1.5517 1.99 130 1.1376 0.6733
0.9423 2.99 195 0.6290 0.7895
0.6334 3.99 260 0.4372 0.86
0.4735 4.99 325 0.4719 0.8429
0.4573 5.99 390 0.3909 0.8590
0.3236 6.99 455 0.3507 0.8752
0.2511 7.99 520 0.2931 0.9019
0.2073 8.99 585 0.2757 0.9133
0.2174 9.99 650 0.2706 0.9114
0.1558 10.99 715 0.2654 0.9114
0.2017 11.99 780 0.2820 0.9114
0.134 12.99 845 0.2431 0.9238
0.0943 13.99 910 0.2606 0.9105
0.1396 14.99 975 0.2514 0.9229
0.1374 15.99 1040 0.2349 0.9305
0.0953 16.99 1105 0.2502 0.9210
0.0742 17.99 1170 0.2515 0.9210
0.0708 18.99 1235 0.2437 0.9257
0.0619 19.99 1300 0.2477 0.9267

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
65
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results