resnet-152-finetuned_resnet152-adam-optimizere-2-autotags

This model is a fine-tuned version of microsoft/resnet-152 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4368
  • Accuracy: 0.8981

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.01
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4424 0.99 65 1.7123 0.56
1.6053 1.99 130 2.0613 0.3152
1.3795 2.99 195 1.3791 0.5552
0.9701 3.99 260 0.9195 0.7038
0.8258 4.99 325 0.9107 0.7067
0.7619 5.99 390 0.9915 0.6867
0.6241 6.99 455 0.7895 0.76
0.497 7.99 520 0.6616 0.8038
0.4709 8.99 585 0.5282 0.8543
0.394 9.99 650 0.5447 0.8429
0.343 10.99 715 0.5108 0.8486
0.3482 11.99 780 0.5224 0.8505
0.2576 12.99 845 0.4796 0.8743
0.1837 13.99 910 0.5008 0.8571
0.1904 14.99 975 0.4366 0.8790
0.1458 15.99 1040 0.4320 0.8990
0.1575 16.99 1105 0.4059 0.8952
0.0992 17.99 1170 0.4362 0.8952
0.0858 18.99 1235 0.4210 0.8971
0.0704 19.99 1300 0.4368 0.8981

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
71
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results