File size: 2,126 Bytes
74857ab 7bc4fa9 74857ab f3e9944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
language:
- en
pipeline_tag: text-classification
base_model: DunnBC22/codebert-base-Malicious_URLs
inference: false
datasets:
- sid321axn/malicious-urls-dataset
tags:
- malicious-urls
- url
---
# ONNX version of DunnBC22/codebert-base-Malicious_URLs
**This model is a conversion of [DunnBC22/codebert-base-Malicious_URLs](https://huggingface.co/DunnBC22/codebert-base-Malicious_URLs) to ONNX** format. It's based on the CodeBERT architecture, tailored for the specific task of identifying URLs that may pose security threats. The model was converted to ONNX using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.
## Model Architecture
**Base Model**: CodeBERT-base, a robust model for programming and natural languages.
**Dataset**: [https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset](https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset).
**Modifications**: Details of any modifications or fine-tuning done to tailor the model for malicious URL detection.
## Usage
Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.
```python
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("laiyer/codebert-base-Malicious_URLs-onnx")
model = ORTModelForSequenceClassification.from_pretrained("laiyer/codebert-base-Malicious_URLs-onnx")
classifier = pipeline(
task="text-classification",
model=model,
tokenizer=tokenizer,
top_k=None,
)
classifier_output = classifier("https://google.com")
print(classifier_output)
```
### LLM Guard
[Malicious URLs scanner](https://llm-guard.com/output_scanners/malicious_urls/)
## Community
Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions,
or engage in discussions about LLM security!
<a href="https://join.slack.com/t/laiyerai/shared_invite/zt-28jv3ci39-sVxXrLs3rQdaN3mIl9IT~w"><img src="https://github.com/laiyer-ai/llm-guard/blob/main/docs/assets/join-our-slack-community.png?raw=true" width="200"></a>
|