Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: NousResearch/Meta-Llama-3-8B

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: semeval2014_train.jsonl
    ds_type: json
    type:
      # JSONL file contains instruction, input, output fields per line.
      # This gets mapped to the equivalent axolotl tags.
      field_instruction: instruction
      field_input: input
      field_output: output
      # Format is used by axolotl to generate the prompt.
      format: |-
        [INST] {input} [/INST]

tokens: # add new control tokens from the dataset to the model
  - "[INST]"
  - "[/INST]"

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out

sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false

adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral
  - embed_tokens
  - lm_head

wandb_project: absa-semeval2014
wandb_entity: psimm
wandb_log_model:
wandb_name: llama-3-8B-semeval2014

hub_model_id: psimm/llama-3-8B-semeval2014

gradient_accumulation_steps: 1
micro_batch_size: 32
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0001

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
eval_steps: 0.05
eval_table_size:
eval_table_max_new_tokens: 128
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

llama-3-8B-semeval2014

This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the SemEval2014 Task 4 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0695
  • F1 Score: 82.13

For more details, see my article

Intended uses & limitations

Aspect-based sentiment analysis in English. Pass it review sentences wrapped in tags, like this: [INST]The cheeseburger was tasty but the fries were soggy.[/INST]

How to run

This adapter requires that two new tokens are added to the tokenizer. The tokens are: "[INST]" and "[/INST]". Also, the base model's embedding layer size has to be increased by 2.

from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer

extra_tokens = ["[INST]", "[/INST]"]
base_model = "NousResearch/Meta-Llama-3-8B"

base_model = AutoModelForCausalLM.from_pretrained("NousResearch/Meta-Llama-3-8B")
base_model.resize_token_embeddings(base_model.config.vocab_size + len(extra_tokens))

tokenizer = AutoTokenizer.from_pretrained("NousResearch/Meta-Llama-3-8B")

tokenizer.add_special_tokens({"additional_special_tokens": extra_tokens})

model = PeftModel.from_pretrained(base_model, "psimm/llama-3-8B-semeval2014")

input_text = "[INST]The food was tasty[/INST]"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

gen_tokens = model.generate(
    input_ids,
    max_length=256,
    temperature=0.01,
)

# Remove the input tokens
output_tokens = gen_tokens[:, input_ids.shape[1] :]

print(tokenizer.batch_decode(output_tokens, skip_special_tokens=True))

Training and evaluation data

SemEval 2014 Task 4 reviews.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
2.5408 0.0112 1 2.2742
0.1159 0.2022 18 0.1026
0.1028 0.4045 36 0.0762
0.0813 0.6067 54 0.0709
0.0908 0.8090 72 0.0665
0.0431 1.0112 90 0.0639
0.0275 1.2135 108 0.0663
0.0224 1.4157 126 0.0659
0.0349 1.6180 144 0.0637
0.0281 1.8202 162 0.0589
0.0125 2.0225 180 0.0592
0.0088 2.2247 198 0.0682
0.0076 2.4270 216 0.0666
0.01 2.6292 234 0.0654
0.0131 2.8315 252 0.0704
0.0075 3.0337 270 0.0679
0.002 3.2360 288 0.0688
0.0029 3.4382 306 0.0692
0.0009 3.6404 324 0.0694
0.0064 3.8427 342 0.0695

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for psimm/llama-3-8B-semeval2014

Adapter
(127)
this model