psyonp's picture
Update README.md
926cf28 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner-model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9351682971314873
          - name: Recall
            type: recall
            value: 0.9491753618310333
          - name: F1
            type: f1
            value: 0.942119769481333
          - name: Accuracy
            type: accuracy
            value: 0.9861658915641373

bert-finetuned-ner-model

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0645
  • Precision: 0.9352
  • Recall: 0.9492
  • F1: 0.9421
  • Accuracy: 0.9862

Intended uses & limitations

Educational purposes on the safety of LLMs

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0764 1.0 1756 0.0713 0.9011 0.9310 0.9158 0.9810
0.0357 2.0 3512 0.0743 0.9291 0.9414 0.9352 0.9841
0.0213 3.0 5268 0.0645 0.9352 0.9492 0.9421 0.9862

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cpu
  • Datasets 3.2.0
  • Tokenizers 0.21.0