griffin-c3t-8L-v0.02-fineweb
Pretraining experiment with griffin/recurrent_gemma arch
Model description
Further training of pszemraj/griffin-v0.01-c3t-8layer-simplewiki-silu on the BEE-spoke-data/fineweb-1M_en-med dataset. It achieves the following results on the evaluation set:
- Loss: 5.1888
- Accuracy: 0.2326
- Num Input Tokens Seen: 798621696
numbers
tl;dr its bad/would need more training:
hf (pretrained=pszemraj/griffin-c3t-8L-v0.02-fineweb,trust_remote_code=True,dtype=float), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 4
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
winogrande | 1 | none | 0 | acc | 0.5146 | ± | 0.0140 |
piqa | 1 | none | 0 | acc | 0.5511 | ± | 0.0116 |
none | 0 | acc_norm | 0.5261 | ± | 0.0116 | ||
openbookqa | 1 | none | 0 | acc | 0.1140 | ± | 0.0142 |
none | 0 | acc_norm | 0.2240 | ± | 0.0187 | ||
lambada_openai | 1 | none | 0 | perplexity | 209503.2246 | ± | 11711.4041 |
none | 0 | acc | 0.0000 | ± | 0.0000 | ||
boolq | 2 | none | 0 | acc | 0.3783 | ± | 0.0085 |
arc_easy | 1 | none | 0 | acc | 0.2593 | ± | 0.0090 |
none | 0 | acc_norm | 0.2774 | ± | 0.0092 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 80085
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen |
---|---|---|---|---|---|
6.0703 | 0.0656 | 400 | 6.2332 | 0.1701 | 52428800 |
5.723 | 0.1313 | 800 | 5.9116 | 0.1893 | 104857600 |
5.5106 | 0.1969 | 1200 | 5.7516 | 0.1976 | 157286400 |
5.455 | 0.2626 | 1600 | 5.6427 | 0.2032 | 209715200 |
5.3236 | 0.3282 | 2000 | 5.5567 | 0.2103 | 262144000 |
5.2764 | 0.3938 | 2400 | 5.4919 | 0.2151 | 314572800 |
5.1625 | 0.4595 | 2800 | 5.4436 | 0.2176 | 367001600 |
5.1851 | 0.5251 | 3200 | 5.3975 | 0.2206 | 419430400 |
5.0618 | 0.5908 | 3600 | 5.3624 | 0.2199 | 471859200 |
5.0278 | 0.6564 | 4000 | 5.3242 | 0.2236 | 524288000 |
5.0389 | 0.7220 | 4400 | 5.2920 | 0.2264 | 576716800 |
4.9732 | 0.7877 | 4800 | 5.2674 | 0.2276 | 629145600 |
4.9375 | 0.8533 | 5200 | 5.2418 | 0.2292 | 681574400 |
4.9322 | 0.9190 | 5600 | 5.2166 | 0.2312 | 734003200 |
4.8818 | 0.9846 | 6000 | 5.1981 | 0.2315 | 786432000 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.