File size: 49,005 Bytes
1117e28 ab091f1 1117e28 ab091f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 |
---
license: mit
language:
- zh
pipeline_tag: image-classification
---
```python
import numpy as np
import scipy.special as ssp
import matplotlib.pyplot as plt
```
```python
input_nodes=784 # 输入层节点数
hide_nodes=200 # 隐藏层节点数,理论上越高越好,但是高到一定程度就到顶了(默认:200)
out_nodes=10 # 输出层节点数
learningrate = 0.1 #学习率
```
```python
wih = np.random.normal(0.0, pow(hide_nodes, -0.5), (hide_nodes, input_nodes)) #矩阵大小为隐藏层节点数×输入层节点数
#np.random.normal()的意思是一个正态分布,normal这里是正态的意思
plt.hist(wih)
```
(array([[ 1., 2., 3., ..., 8., 0., 0.],
[ 0., 0., 2., ..., 4., 0., 0.],
[ 0., 1., 5., ..., 9., 0., 0.],
...,
[ 0., 1., 2., ..., 10., 0., 0.],
[ 0., 1., 13., ..., 7., 0., 0.],
[ 0., 2., 8., ..., 3., 1., 0.]]),
array([-0.32167192, -0.25702275, -0.19237358, -0.12772441, -0.06307524,
0.00157393, 0.0662231 , 0.13087226, 0.19552143, 0.2601706 ,
0.32481977]),
<a list of 784 BarContainer objects>)
![png](output_2_1.png)
```python
# Visualize weight matrix wih
plt.imshow(wih, cmap='coolwarm', aspect='auto')
#plt.imshow(wih, cmap='hot', aspect='auto')
plt.xlabel('Output Node')
plt.ylabel('Hidden Node')
plt.title('Weight Matrix (Hidden to input)')
plt.colorbar()
plt.show()
```
![png](output_3_0.png)
```python
who = np.random.normal(0.0, pow(hide_nodes, -0.5), (out_nodes, hide_nodes)) #矩阵大小为输出层节点数×隐藏层节点数
plt.hist(who)
#同上
```
(array([[0., 0., 1., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 1., 1., 0.],
...,
[0., 0., 0., ..., 1., 1., 0.],
[0., 0., 0., ..., 1., 0., 0.],
[0., 1., 2., ..., 0., 0., 0.]]),
array([-0.26261651, -0.21194208, -0.16126765, -0.11059322, -0.05991879,
-0.00924436, 0.04143007, 0.0921045 , 0.14277893, 0.19345336,
0.24412779]),
<a list of 200 BarContainer objects>)
![png](output_4_1.png)
```python
# Visualize weight matrix who
plt.imshow(who, cmap='coolwarm', aspect='auto')
plt.xlabel('Output Node')
plt.ylabel('Hidden Node')
plt.title('Weight Matrix (Hidden to Output)')
plt.colorbar()
plt.show()
```
![png](output_5_0.png)
```python
#linspace 参考:https://blog.csdn.net/neweastsun/article/details/99676029
x = np.linspace(start=-6, stop=6, num=121) #从-6到6范围内创建121个距离相近的数字,从而生成x数组用于代入后面的y
'''
e.g.
x = np.linspace(start = 0, stop = 100, num = 5) ##从0到100范围内创建5个距离相近的数字
print(x)
OUT:[ 0. 25. 50. 75. 100.]
#lambda示例
#lambda arg1,arg2,arg3… :<表达式>
func=lambda x : x+1 #func=x+1
print(func(2)) #func=2+1=3
func=lambda x,y : x+y #func=x+y
print(func(1,2)) #func=1+2=3
'''
activation_function = lambda x: ssp.expit(x) #logistic sigmoid函数,定义为expit(x)= 1 /(1 + exp(-x))
y = activation_function(x)
plt.plot(x, y)
plt.xlabel('x')
plt.title('logistic sigmoid(x)')
plt.show()
```
![png](output_6_0.png)
```python
#数据集分为训练集和测试集,训练集有60000条数据,测试集有10000条数据,
#每一条数据都是由785个数字组成,数值大小在0~255之间,第一个数字代表该条数据所表示的数字,
#后面的784个数字可以形成28×28的矩阵(28x28=784),每一个数值都对应该位置的像素点的像素值灰度大小,由此形成了一幅像素为28×28的图片。
#这里是训练集
test_data_file = open("mnist_train.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
print("总数据量:",len(test_data_list))
print("第1条数据:",test_data_list[0])
print("第1条数据表示的数字:",test_data_list[0][0])
print("第1条数据的28x28矩阵数据:",test_data_list[0][1:])
```
总数据量: 60000
第1条数据: 5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,18,18,18,126,136,175,26,166,255,247,127,0,0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,253,253,253,253,225,172,253,242,195,64,0,0,0,0,0,0,0,0,0,0,0,49,238,253,253,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,156,107,253,253,205,11,0,43,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,1,154,253,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,139,253,190,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,190,253,70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35,241,225,160,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,81,240,253,253,119,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,186,253,253,150,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,93,252,253,187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,249,253,249,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,130,183,253,253,207,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,39,148,229,253,253,253,250,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,114,221,253,253,253,253,201,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,55,172,226,253,253,253,253,244,133,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,212,135,132,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
第1条数据表示的数字: 5
第1条数据的28x28矩阵数据: ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,18,18,18,126,136,175,26,166,255,247,127,0,0,0,0,0,0,0,0,0,0,0,0,30,36,94,154,170,253,253,253,253,253,225,172,253,242,195,64,0,0,0,0,0,0,0,0,0,0,0,49,238,253,253,253,253,253,253,253,253,251,93,82,82,56,39,0,0,0,0,0,0,0,0,0,0,0,0,18,219,253,253,253,253,253,198,182,247,241,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,156,107,253,253,205,11,0,43,154,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,1,154,253,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,139,253,190,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,190,253,70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35,241,225,160,108,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,81,240,253,253,119,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,45,186,253,253,150,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,93,252,253,187,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,249,253,249,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,46,130,183,253,253,207,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,39,148,229,253,253,253,250,182,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,114,221,253,253,253,253,201,78,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,66,213,253,253,253,253,198,81,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,171,219,253,253,253,253,195,80,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,55,172,226,253,253,253,253,244,133,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,212,135,132,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
```python
all_values = test_data_list[0].split(',') # split()函数将第1条数据进行拆分,以‘,’为分界点进行拆分
image_array = np.asfarray(all_values[1:]).reshape((28,28)) # asfarray()函数将all_values中的后784个数字进行重新排列
# reshape()函数可以对数组进行整型,使其成为28×28的二维数组,asfarry()函数可以使其成为矩阵。
plt.imshow(image_array, interpolation = 'nearest') # imshow()函数可以将28×28的矩阵中的数值当做像素值,使其形成图片
```
<matplotlib.image.AxesImage at 0x7fa3da4adfd0>
![png](output_8_1.png)
```python
#接下去是第1层和最后1层的逻辑
```
```python
# 对输入的数据进行处理,取后784个数据除以255,再乘以0.99,最后加上0。01,是所有的数据都在0.01到1.00之间
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 #输入层,784个输入
# 建立准确输出结果矩阵,对应的位置标签数值为0.99,其他位置为0.01
#最终实现将0~255转换为0~1的浮点数
#可视化中间输出
print(inputs)
middle_layer_fig = np.asfarray((inputs-0.01)/0.99*255.0 )
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((28,28))
plt.imshow(middle_layer_fig, interpolation = 'nearest')
```
[0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.02164706 0.07988235 0.07988235 0.07988235
0.49917647 0.538 0.68941176 0.11094118 0.65447059 1.
0.96894118 0.50305882 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.12647059 0.14976471 0.37494118 0.60788235
0.67 0.99223529 0.99223529 0.99223529 0.99223529 0.99223529
0.88352941 0.67776471 0.99223529 0.94952941 0.76705882 0.25847059
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.20023529
0.934 0.99223529 0.99223529 0.99223529 0.99223529 0.99223529
0.99223529 0.99223529 0.99223529 0.98447059 0.37105882 0.32835294
0.32835294 0.22741176 0.16141176 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.07988235 0.86023529 0.99223529
0.99223529 0.99223529 0.99223529 0.99223529 0.77870588 0.71658824
0.96894118 0.94564706 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.32058824 0.61564706 0.42541176 0.99223529
0.99223529 0.80588235 0.05270588 0.01 0.17694118 0.60788235
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.06435294 0.01388235 0.60788235 0.99223529 0.35941176
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.54964706 0.99223529 0.74764706 0.01776471 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.05270588
0.74764706 0.99223529 0.28176471 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.14588235 0.94564706
0.88352941 0.63117647 0.42929412 0.01388235 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.32447059 0.94176471 0.99223529
0.99223529 0.472 0.10705882 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.18470588 0.73211765 0.99223529 0.99223529
0.59235294 0.11482353 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.07211765 0.37105882 0.98835294 0.99223529 0.736
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.97670588 0.99223529 0.97670588 0.25847059 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.18858824 0.51470588 0.72047059 0.99223529
0.99223529 0.81364706 0.01776471 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.16141176 0.58458824
0.89905882 0.99223529 0.99223529 0.99223529 0.98058824 0.71658824
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.10317647 0.45258824 0.868 0.99223529 0.99223529 0.99223529
0.99223529 0.79035294 0.31282353 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.09929412 0.26623529 0.83694118 0.99223529
0.99223529 0.99223529 0.99223529 0.77870588 0.32447059 0.01776471
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.07988235 0.67388235
0.86023529 0.99223529 0.99223529 0.99223529 0.99223529 0.76705882
0.32058824 0.04494118 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.22352941 0.67776471 0.88741176 0.99223529 0.99223529 0.99223529
0.99223529 0.95729412 0.52635294 0.05270588 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.538 0.99223529
0.99223529 0.99223529 0.83305882 0.53411765 0.52247059 0.07211765
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 ]
<matplotlib.image.AxesImage at 0x7fa3da408d00>
![png](output_10_2.png)
```python
targets = np.zeros(out_nodes) + 0.01
#输出层,10个数字,10个输出,0~1的概率范围
#输出层是1个list,由10个数字组成,第一个数字代表0的概率,依次类推,第10个数字代表9的概率
#这里是输出的[理想结果]
# all_values[0] is the target label for this record
#可视化中间输出
print(len(targets))
print(targets)
middle_layer_fig = np.asfarray((targets-0.01)/0.99*255.0 )
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
plt.imshow(middle_layer_fig, interpolation = 'nearest')
```
10
[0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
<matplotlib.image.AxesImage at 0x7fa3da3ad490>
![png](output_11_2.png)
```python
#print("第1行数据:",all_values)
#print("第1行数据所表示的数字:",all_values[0])
targets[int(all_values[0])] = 0.99
#将数据集的数据表示的数字在其指定的输出层的概率位置上的概率置0.99
#这里是第1行数据,对应的是数组5,因此按照其在输出层的表示的概率位置,应当将第6个数字改为0.99
#可视化中间输出
print(targets)
middle_layer_fig = np.asfarray((targets-0.01)/0.99*255.0 )
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
plt.imshow(middle_layer_fig, interpolation = 'nearest')
```
[0.01 0.01 0.01 0.01 0.01 0.99 0.01 0.01 0.01 0.01]
<matplotlib.image.AxesImage at 0x7fa3da30b4f0>
![png](output_12_2.png)
```python
#对比
targets = np.zeros(out_nodes) + 0.01
print(targets)
targets[int(all_values[0])] = 0.99
print(targets)
```
[0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
[0.01 0.01 0.01 0.01 0.01 0.99 0.01 0.01 0.01 0.01]
```python
#接下去是训练逻辑,训练的目标就是让输入的数据的概率尽可能接近理想结果
```
```python
# 将导入的输入列表数据和正确的输出结果转换成二维矩阵
INPUT = np.array(inputs, ndmin = 2).T # array函数是矩阵生成函数,将输入的inputs转换成二维矩阵,ndmin=2表示二维矩阵
TARGETS = np.array(targets, ndmin = 2).T # .T表示矩阵的转置,生成后的矩阵的转置矩阵送入变量targets
#print(INPUT)
#print(TARGETS)
```
```python
# 进行前向传播
# 利用导入的数据计算进入隐藏层的数据
hidden_inputs = np.dot(wih, INPUT) # dot()函数是指两个矩阵做点乘
#可视化中间输出
print(hidden_inputs.T)
# Visualize hidden layer activations
#hidden_inputs = hidden_inputs.reshape((20, 10))
plt.imshow(hidden_inputs.T, cmap='hot', aspect='auto')
plt.xlabel('Hidden Node')
plt.ylabel('Sample')
plt.title('Hidden Layer Activations')
plt.colorbar()
plt.show()
```
[[-8.64964137e-01 -1.96617581e+00 7.43349647e-01 6.52699592e-01
3.90933284e-01 1.23038702e+00 -1.26960367e-01 -8.89064451e-01
1.25956352e-01 -2.66009122e-01 -3.87411628e-01 -8.55340714e-01
-3.73072385e-01 -4.88004264e-01 8.93519640e-01 -5.94015812e-01
-3.94940660e-01 -6.03127644e-01 -1.83468156e-01 1.21212338e+00
1.11156836e+00 -3.30592481e-03 -1.45441494e-01 -1.16176875e-01
-6.79873194e-01 1.35716864e-03 -9.88715475e-01 2.53326180e-01
7.95912751e-02 -8.71915904e-01 -4.99039240e-01 -9.32069427e-02
-1.29952079e+00 -1.18946859e-01 -2.22242548e-01 1.07578559e+00
1.69691315e-01 -4.42288856e-01 1.18089766e+00 3.81134469e-02
3.15796540e-01 1.07374634e+00 -7.71978830e-01 -1.77028239e-01
7.83445294e-01 1.16099348e+00 5.28529106e-01 -1.94025187e-02
2.00808369e-01 6.72844377e-01 1.21480995e+00 -2.05275063e-01
-1.02432531e+00 -1.40022847e+00 7.16467553e-01 -6.38000445e-01
-1.44617295e-01 4.72539610e-01 -6.51132050e-02 -1.02462391e+00
1.38454078e+00 7.12628876e-01 7.39171671e-02 -3.34221329e-01
5.03935486e-01 2.08522402e+00 2.29977865e-01 -8.58595299e-01
9.14983758e-01 5.27664003e-02 -3.49103724e-01 -1.29338789e+00
8.10453241e-01 2.08934398e+00 1.66835420e+00 -1.12660303e+00
-1.12181011e-01 1.70474734e-01 5.20577595e-01 6.00166910e-01
-3.81956593e-01 1.30122404e-01 -5.23356991e-01 -1.01661725e+00
-3.38834016e-01 6.30692963e-01 1.17169833e-01 9.13183907e-01
-1.10728477e+00 9.91458051e-01 -2.88315338e-01 7.70893096e-01
5.82703388e-01 -9.29590575e-02 -1.26294025e+00 1.94053320e-01
-5.96912464e-01 2.60424259e-01 4.29504575e-02 -7.60243022e-01
2.03240513e-02 7.27749904e-02 -7.19974851e-01 5.25634269e-01
-4.96678397e-01 -1.62713415e+00 2.89082887e-01 -5.26173924e-01
-3.82685176e-01 -1.76410064e+00 -1.33431697e+00 4.32481392e-01
2.33941967e+00 7.52802920e-01 2.17849572e-01 -8.38437665e-02
-5.51882457e-01 1.84692442e+00 -4.10696115e-01 3.97851800e-01
-1.49071923e-01 -2.81875633e-01 1.95378425e+00 -4.66989868e-01
-4.73375650e-01 1.66522535e-01 5.01408007e-01 -1.30089311e-01
1.44543864e+00 4.28063957e-01 3.86986466e-01 6.62182100e-01
-1.39480966e-01 -1.82625599e-01 -3.67218386e-01 -1.48826110e+00
-4.31214177e-01 -8.92040712e-01 -4.15032383e-01 -3.76042786e-01
-3.83971840e-01 7.49005651e-01 -3.16839497e-01 -7.70655367e-01
3.56918546e-01 -1.93469779e-01 -4.51644191e-01 -5.20009826e-01
7.61656212e-01 -5.39819400e-01 1.24457323e-01 4.02348827e-01
4.96390519e-02 -1.61507281e-01 -6.04062425e-01 4.77674466e-01
5.65500425e-01 -1.74931564e-02 1.82237163e-01 -2.52744493e-01
-9.74909666e-01 4.39247112e-01 2.50623145e-01 -5.47588554e-01
-1.10213410e+00 -7.96484480e-03 8.18154047e-01 -5.31161336e-01
9.45395512e-02 -4.80934079e-02 -4.15248499e-01 2.01334670e-02
-7.73149020e-01 5.16150140e-01 -1.11187297e+00 -3.84973353e-01
1.57056302e-01 9.52205562e-02 -4.17473666e-04 -2.64269971e-01
3.51661057e-02 -8.62097845e-01 -6.41290441e-01 -6.10216699e-01
1.48703377e+00 -9.36182669e-01 2.29758638e-01 2.69581850e-03
-9.90544195e-03 -1.16945542e-01 2.16055208e-01 -5.16034753e-01
-5.47460522e-01 1.21898405e+00 -1.40917054e-01 -1.10955125e+00
-1.06838867e+00 -8.16027514e-01 3.18583449e-01 7.11316110e-01]]
![png](output_16_1.png)
```python
# 利用激活函数sigmoid计算隐藏层输出的数据
hidden_outputs = activation_function(hidden_inputs)
#可视化中间输出
print(hidden_outputs.T)
# Visualize hidden layer activations
plt.imshow(hidden_outputs.T, cmap='hot', aspect='auto')
plt.xlabel('Hidden Node')
plt.ylabel('Sample')
plt.title('Hidden Layer Activations')
plt.colorbar()
plt.show()
```
[[0.29630324 0.12280024 0.6777279 0.65761855 0.59650735 0.7738863
0.46830247 0.29130293 0.53144752 0.43388711 0.40434055 0.29831372
0.40779883 0.38036382 0.70961597 0.35571397 0.40252851 0.35362846
0.45426119 0.77067444 0.75242139 0.49917352 0.46370359 0.4709884
0.33628961 0.50033929 0.27116587 0.56299502 0.51988732 0.2948558
0.37776648 0.47671512 0.21424568 0.4702983 0.44466693 0.74569562
0.54232132 0.39119572 0.76510917 0.50952721 0.5782995 0.74530871
0.3160512 0.45585816 0.68642218 0.76151319 0.62913998 0.49514952
0.55003407 0.66213977 0.77114891 0.44886068 0.26418574 0.19777986
0.67182867 0.34569868 0.46390856 0.61598467 0.48372745 0.2641277
0.79971928 0.67098178 0.51847088 0.41721386 0.62338374 0.88945871
0.55724239 0.29763291 0.71401891 0.51318854 0.41359978 0.21527993
0.69220608 0.88986315 0.84135627 0.24478854 0.47198412 0.54251577
0.62728282 0.64569449 0.40565508 0.53248478 0.37206759 0.26568684
0.41609274 0.65264657 0.52925899 0.71365125 0.24837744 0.72937582
0.42841635 0.68371406 0.64168922 0.47677696 0.22046816 0.54836166
0.35505039 0.56474058 0.51073596 0.31859351 0.50508084 0.51818572
0.32739852 0.6284643 0.37832157 0.16422333 0.57177159 0.3714097
0.40547943 0.14627751 0.20844618 0.60646605 0.91208956 0.67978913
0.55424802 0.47905133 0.36542777 0.86376559 0.39874522 0.59817142
0.46280088 0.429994 0.87585869 0.38532895 0.38381758 0.5415347
0.62279016 0.46752346 0.80929544 0.60541126 0.59555704 0.6597504
0.46518618 0.45447007 0.40921333 0.18418287 0.39383643 0.29068888
0.39770607 0.40708168 0.4051693 0.678962 0.42144618 0.31633735
0.5882943 0.45178286 0.38896992 0.37284994 0.68171321 0.3682296
0.53107423 0.59925186 0.51240722 0.45971072 0.35341483 0.61719858
0.63772427 0.49562682 0.54543362 0.4371481 0.27390298 0.60807962
0.56232987 0.36642406 0.24934024 0.4980088 0.69384436 0.37024607
0.5236173 0.48797896 0.3976543 0.5050332 0.3157983 0.6262471
0.24752187 0.40492795 0.53918356 0.52378717 0.49989563 0.43431435
0.50879062 0.29690123 0.34495489 0.35200977 0.81563264 0.28167207
0.5571883 0.50067395 0.49752366 0.47079689 0.55380467 0.37377991
0.36645379 0.77188471 0.46482892 0.24795456 0.25570964 0.30660756
0.57897899 0.67069191]]
![png](output_17_1.png)
```python
# 利用隐藏层输出的数据计算导入输出层的数据
final_inputs = np.dot(who, hidden_outputs) # dot()函数是指两个矩阵做点乘
#可视化中间输出
print(final_inputs.T)
middle_layer_fig = np.asfarray((final_inputs-0.01)/0.99*255.0 )
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
plt.imshow(middle_layer_fig, interpolation = 'nearest')
```
[[ 0.56028136 0.82552015 0.34670209 0.17793798 -0.66372393 -0.37233255
-0.39555073 -0.76359914 -0.48399976 -0.23884983]]
<matplotlib.image.AxesImage at 0x7fa3d89ffc10>
![png](output_18_2.png)
```python
# Or visualize final outputs as a heatmap
plt.imshow(final_inputs, cmap='hot', aspect='auto')
plt.xlabel('Output Node')
plt.ylabel('Sample')
plt.title('Final Inputs')
plt.colorbar()
plt.show()
```
![png](output_19_0.png)
```python
# Visualize final layer inputs
plt.bar(range(out_nodes), final_inputs.flatten())
plt.xlabel('Output Node')
plt.ylabel('Input Value')
plt.title('Final Layer Inputs')
plt.show()
```
![png](output_20_0.png)
```python
# 利用激活函数sigmoid计算输出层的输出结果
final_outputs = activation_function(final_inputs)
# 前向传播结束
#可视化中间输出
print(final_outputs.T)
middle_layer_fig = np.asfarray((final_outputs-0.01)/0.99*255.0 )
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
plt.imshow(middle_layer_fig, interpolation = 'nearest')
```
[[0.63651764 0.69540686 0.58581762 0.54436749 0.33990358 0.40797752
0.40238179 0.31786536 0.38130809 0.44056981]]
<matplotlib.image.AxesImage at 0x7fa3da5f10a0>
![png](output_21_2.png)
```python
# Or visualize final outputs as a heatmap
plt.imshow(final_outputs, cmap='hot', aspect='auto')
plt.xlabel('Output Node')
plt.ylabel('Sample')
plt.title('Final Outputs')
plt.colorbar()
plt.show()
```
![png](output_22_0.png)
```python
# Visualize final layer outputs (sigmoid)
plt.bar(range(out_nodes), final_outputs.flatten())
plt.xlabel('Output Node')
plt.ylabel('Input Value')
plt.title('Final Layer Inputs')
plt.show()
```
![png](output_23_0.png)
```python
# 进行反向传播
# 计算前向传播得到的输出结果与正确值之间的误差
output_errors = TARGETS - final_outputs
#可视化中间输出
print(output_errors.T)
middle_layer_fig = np.asfarray((output_errors-0.01)/0.99*255.0 )
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
plt.imshow(middle_layer_fig, interpolation = 'nearest')
```
[[-0.62651764 -0.68540686 -0.57581762 -0.53436749 -0.32990358 0.58202248
-0.39238179 -0.30786536 -0.37130809 -0.43056981]]
<matplotlib.image.AxesImage at 0x7fa3d87db8b0>
![png](output_24_2.png)
```python
# Visualize output errors as a bar chart
plt.bar(range(out_nodes), output_errors.flatten())
plt.xlabel('Output Node')
plt.ylabel('Error Value')
plt.title('Output Errors')
plt.show()
```
![png](output_25_0.png)
```python
# Or visualize output errors as a scatter plot
plt.scatter(range(out_nodes), output_errors.flatten())
plt.xlabel('Output Node')
plt.ylabel('Error Value')
plt.title('Output Errors')
plt.show()
```
![png](output_26_0.png)
```python
# 隐藏层的误差是由输出层的误差通过两个层之间的权重矩阵进行分配的,在隐藏层重新结合
```
```python
hidden_errors = np.dot(who.T, output_errors) # 隐藏层与输出层之间的权重矩阵的转置与前向传播的误差矩阵的点乘
#可视化中间输出
print(hidden_errors.T)
#middle_layer_fig = np.asfarray((hidden_errors-0.01)/0.99*255.0 )
#middle_layer_fig = np.asfarray(middle_layer_fig).reshape((20,10))
#plt.imshow(middle_layer_fig, interpolation = 'nearest')
```
[[ 0.23145703 -0.09199276 -0.12220719 -0.15896069 0.06424253 0.10197068
-0.23125848 -0.00782811 -0.08381227 -0.11514534 -0.09644854 -0.12429981
0.11276763 -0.26363747 -0.00989155 -0.14107911 0.27482566 0.10077863
0.08727872 -0.12703169 0.04482464 0.07979755 -0.08780178 -0.10513761
-0.00644824 -0.11657829 -0.04453468 0.05577635 0.01531368 0.13738715
0.03474212 0.22550981 -0.08763767 -0.06505764 -0.11262462 -0.04158586
-0.09128322 -0.01086248 0.05525096 -0.12434499 0.17656152 0.04339815
-0.03433653 -0.11152836 0.03669448 -0.01467246 0.01413861 0.17155288
-0.12223192 -0.10968683 0.10515451 0.14353315 0.08262463 0.16657906
-0.10807233 -0.10796653 -0.01689826 0.05175527 -0.02711501 -0.06925127
0.24918363 -0.0658346 -0.01650576 -0.14181141 -0.06328054 0.11752269
0.07361948 -0.25658514 -0.03837734 0.05291595 0.18022871 -0.02485894
-0.11155773 -0.17969543 0.05235072 -0.03868002 0.07991305 -0.00944794
0.01358124 -0.04854606 -0.11433062 -0.11457118 -0.10174756 0.08157923
-0.07922054 0.16252699 -0.0668835 0.02633577 -0.25292949 -0.00164063
0.17719827 -0.27838094 0.06372956 -0.08327759 -0.1045452 0.0994223
-0.18854096 0.01717639 -0.22337965 -0.05331426 -0.09068925 0.00909319
-0.11275048 0.02400681 0.15580461 0.04395622 0.05191163 0.07671998
-0.07357827 0.04857611 0.01200461 -0.01824155 0.20218933 -0.01648541
-0.08841815 -0.22972757 -0.06564815 0.25879827 0.03363929 -0.08144042
-0.00117747 0.04931258 -0.28733007 0.09207885 -0.11084745 0.03480787
-0.30290225 0.02605289 -0.03273764 0.13374028 0.06733113 -0.08264645
-0.10579 -0.16626817 -0.19349467 0.2339928 0.25338442 -0.04781617
0.01431193 -0.06614716 -0.03706169 -0.18027598 0.03546684 0.07375848
-0.13524866 -0.14490857 -0.21459248 0.1796899 0.02376605 -0.02517879
0.00632407 0.03003414 -0.11537092 0.03510202 0.07357026 0.0971219
-0.08266574 0.03720117 0.09910707 -0.04312925 -0.08307132 0.02983252
0.01496464 0.07249455 -0.1618727 0.11377448 -0.03207163 0.19216192
0.09118743 0.01690548 -0.06923089 0.02959015 0.20129512 -0.04899694
0.1233579 -0.20508642 0.01812198 -0.00063595 0.17360329 0.11723159
0.15777609 0.07835488 -0.05387801 -0.01755501 0.10815374 0.22098465
-0.12040005 0.025853 -0.08475004 0.24887947 0.07332807 0.0784619
0.01351764 -0.08704183 0.08712977 0.0756019 -0.04051772 -0.15931343
-0.04228901 0.13588616]]
```python
# Visualize hidden errors as a bar chart
plt.bar(range(hide_nodes), hidden_errors.flatten())
plt.xlabel('Hidden Node')
plt.ylabel('Error Value')
plt.title('Hidden Errors')
plt.show()
```
![png](output_29_0.png)
```python
# Or visualize hidden errors as a scatter plot
plt.scatter(range(hide_nodes), hidden_errors.flatten())
plt.xlabel('Hidden Node')
plt.ylabel('Error Value')
plt.title('Hidden Errors')
plt.show()
```
![png](output_30_0.png)
```python
# 对隐藏层与输出层之间的权重矩阵进行更新迭代
who += learningrate * np.dot((output_errors * final_outputs * (1.0 - final_outputs)),np.transpose(hidden_outputs))
# 对输入层与隐藏层之间的权重矩阵进行更新迭代
wih += learningrate * np.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), np.transpose(INPUT))
```
```python
#第一次迭代训练结束
print(wih)
print(who)
```
[[ 0.02067233 -0.07978803 0.03108053 ... -0.03073812 0.0557655
-0.05129495]
[ 0.07106607 0.08339657 -0.09380426 ... 0.0441884 -0.03837313
-0.08557481]
[ 0.05502248 -0.09130093 0.0384007 ... -0.00538593 0.06249898
0.08624116]
...
[-0.00994263 -0.07816935 -0.01082394 ... 0.00301429 -0.00230436
0.09999818]
[ 0.03612263 -0.01946694 0.0954403 ... 0.01146139 -0.00025476
-0.12006706]
[-0.05983042 -0.01998364 -0.06092712 ... -0.02392167 -0.06806361
0.01094472]]
[[-0.0204511 -0.07749507 -0.00194097 ... 0.09540347 0.008829
-0.02140005]
[-0.01264093 0.06889351 0.04956639 ... -0.0669025 -0.01843888
0.00722866]
[-0.05481193 0.04000967 -0.09688887 ... 0.07287872 0.11162873
-0.12241058]
...
[-0.0972931 0.05829893 0.13900051 ... 0.04472318 0.0444388
-0.1383636 ]
[ 0.0109094 0.01127165 0.00850074 ... 0.00947806 -0.08093348
-0.17257885]
[-0.08861324 0.04998882 0.03560659 ... 0.05427103 -0.06461784
0.01395731]]
```python
print(wih)
# Visualize weight matrix wih
plt.imshow(wih, cmap='coolwarm', aspect='auto')
plt.xlabel('Output Node')
plt.ylabel('Hidden Node')
plt.title('Weight Matrix (Hidden to input)')
plt.colorbar()
plt.show()
```
[[ 0.02067233 -0.07978803 0.03108053 ... -0.03073812 0.0557655
-0.05129495]
[ 0.07106607 0.08339657 -0.09380426 ... 0.0441884 -0.03837313
-0.08557481]
[ 0.05502248 -0.09130093 0.0384007 ... -0.00538593 0.06249898
0.08624116]
...
[-0.00994263 -0.07816935 -0.01082394 ... 0.00301429 -0.00230436
0.09999818]
[ 0.03612263 -0.01946694 0.0954403 ... 0.01146139 -0.00025476
-0.12006706]
[-0.05983042 -0.01998364 -0.06092712 ... -0.02392167 -0.06806361
0.01094472]]
![png](output_33_1.png)
```python
print(who)
# Visualize weight matrix who
plt.imshow(who, cmap='coolwarm', aspect='auto')
plt.xlabel('Output Node')
plt.ylabel('Hidden Node')
plt.title('Weight Matrix (Hidden to Output)')
plt.colorbar()
plt.show()
```
[[-0.0204511 -0.07749507 -0.00194097 ... 0.09540347 0.008829
-0.02140005]
[-0.01264093 0.06889351 0.04956639 ... -0.0669025 -0.01843888
0.00722866]
[-0.05481193 0.04000967 -0.09688887 ... 0.07287872 0.11162873
-0.12241058]
...
[-0.0972931 0.05829893 0.13900051 ... 0.04472318 0.0444388
-0.1383636 ]
[ 0.0109094 0.01127165 0.00850074 ... 0.00947806 -0.08093348
-0.17257885]
[-0.08861324 0.04998882 0.03560659 ... 0.05427103 -0.06461784
0.01395731]]
![png](output_34_1.png)
```python
#完整训练流程
```
```python
input_nodes=784 # 输入层节点数
hide_nodes=200 # 隐藏层节点数
out_nodes=10 # 输出层节点数
learningrate = 0.1 #学习率
train_errors = []
epochs=5
wih = np.random.normal(0.0, pow(hide_nodes, -0.5), (hide_nodes, input_nodes)) #矩阵大小为隐藏层节点数×输入层节点数
#np.random.normal()的意思是一个正态分布,normal这里是正态的意思
who = np.random.normal(0.0, pow(hide_nodes, -0.5), (out_nodes, hide_nodes)) #矩阵大小为输出层节点数×隐藏层节点数
activation_function = lambda x: ssp.expit(x) #结合上述所学,这里写一段原理是logistic sigmoid的激活函数
test_data_file = open("mnist_train.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
for e in range(epochs):
# go through all records in the training data set
# 遍历所有输入的数据
print('epochs start:',e)
# 计算训练集上的误差
train_error = 0.0
for record in test_data_list:
all_values = record.split(',') # split()函数将第1条数据进行拆分,以‘,’为分界点进行拆分
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 #输入层,784个输入
targets = np.zeros(out_nodes) + 0.01
targets[int(all_values[0])] = 0.99
INPUT = np.array(inputs, ndmin = 2).T # array函数是矩阵生成函数,将输入的inputs转换成二维矩阵,ndmin=2表示二维矩阵
TARGETS = np.array(targets, ndmin = 2).T # .T表示矩阵的转置,生成后的矩阵的转置矩阵送入变量targets
# 进行前向传播
# 利用导入的数据计算进入隐藏层的数据
hidden_inputs = np.dot(wih, INPUT) # dot()函数是指两个矩阵做点乘
# 利用激活函数sigmoid计算隐藏层输出的数据
hidden_outputs = activation_function(hidden_inputs)
# 利用隐藏层输出的数据计算导入输出层的数据
final_inputs = np.dot(who, hidden_outputs) # dot()函数是指两个矩阵做点乘
# 利用激活函数sigmoid计算输出层的输出结果
final_outputs = activation_function(final_inputs)
# 前向传播结束
# 进行反向传播
# 计算前向传播得到的输出结果与正确值之间的误差
output_errors = TARGETS - final_outputs
# 隐藏层的误差是由输出层的误差通过两个层之间的权重矩阵进行分配的,在隐藏层重新结合
hidden_errors = np.dot(who.T, output_errors) # 隐藏层与输出层之间的权重矩阵的转置与前向传播的误差矩阵的点乘
# 对隐藏层与输出层之间的权重矩阵进行更新迭代
who += learningrate * np.dot((output_errors * final_outputs * (1.0 - final_outputs)),np.transpose(hidden_outputs))
# 对输入层与隐藏层之间的权重矩阵进行更新迭代
wih += learningrate * np.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), np.transpose(INPUT))
train_error += np.sum((output_errors) ** 2)
train_error /= len(test_data_list)
train_errors.append(train_error)
# 画出误差曲线
plt.plot(train_errors, label='training error')
plt.legend()
plt.show()
```
epochs start: 0
epochs start: 1
epochs start: 2
epochs start: 3
epochs start: 4
![png](output_36_1.png)
```python
#最终结果,这两个变量就是最终的权重(weights)
print(who)
print(wih)
final_who=who
final_wih=wih
```
[[-1.16611326 -0.4525141 -0.06610833 ... -0.45357449 -0.48939251
0.64537313]
[-0.23350166 -0.07640343 -0.33892076 ... -0.42012762 -0.09425477
-0.35624211]
[ 0.02538154 -0.36034837 -0.31796842 ... -0.03179198 0.24630403
0.53641215]
...
[-0.62273744 1.44743377 0.37902492 ... -1.22510993 0.85708252
-0.0379783 ]
[-0.30649461 -0.45335212 -0.75158325 ... 0.27636151 -0.47017666
-0.43715161]
[ 0.01993143 -1.11644346 1.10811109 ... 0.39435807 -0.77164373
-0.37836149]]
[[ 0.01027389 -0.06948278 -0.13336783 ... 0.0431249 0.0116984
0.01118535]
[ 0.04093141 0.13349408 0.0447183 ... -0.02876729 -0.08677845
-0.05826928]
[-0.11370514 -0.04104104 0.05438874 ... -0.00457712 -0.01669163
-0.02552346]
...
[-0.00480138 0.04369124 -0.07553194 ... 0.09218518 0.02003152
0.0808828 ]
[-0.00826098 0.07729079 -0.12576362 ... 0.03445958 0.02413203
-0.08935369]
[-0.03758297 -0.06222281 0.02554687 ... 0.13169544 0.01547494
-0.07650541]]
```python
#保存权重
np.save("weights", final_who)
np.save("weights02",final_wih)
```
```python
#测试
```
```python
#加载权重文件(weights)
final_who=np.load("weights.npy")
final_wih=np.load("weights02.npy")
```
```python
# Visualize weight matrix wih
plt.imshow(final_wih, cmap='coolwarm', aspect='auto')
plt.xlabel('Output Node')
plt.ylabel('Hidden Node')
plt.title('Weight Matrix (Hidden to input)')
plt.colorbar()
plt.show()
```
![png](output_41_0.png)
```python
# Visualize weight matrix who
plt.imshow(final_who, cmap='coolwarm', aspect='auto')
plt.xlabel('Output Node')
plt.ylabel('Hidden Node')
plt.title('Weight Matrix (Hidden to output)')
plt.colorbar()
plt.show()
```
![png](output_42_0.png)
```python
test_data_file = open("mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
```
```python
data_serial_num=455
all_values = test_data_list[data_serial_num].split(',') # split()函数将第1条数据进行拆分,以‘,’为分界点进行拆分
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
#print(inputs)
image_array = np.asfarray(all_values[1:]).reshape((28,28)) # asfarray()函数将all_values中的后784个数字进行重新排列
# reshape()函数可以对数组进行整型,使其成为28×28的二维数组,asfarry()函数可以使其成为矩阵。
plt.imshow(image_array, interpolation = 'nearest') # imshow()函数可以将28×28的矩阵中的数值当做像素值,使其形成图片
```
<matplotlib.image.AxesImage at 0x7fa3d809b2e0>
![png](output_44_1.png)
```python
test_inputs = np.array(inputs, ndmin = 2).T
# 以下程序为计算输出结果的程序,与上面前向传播算法一致
hidden_inputs = np.dot(final_wih, test_inputs)
hidden_outputs = activation_function(hidden_inputs)
final_inputs = np.dot(final_who, hidden_outputs)
final_outputs = activation_function(final_inputs)
print(final_outputs)
```
[[0.01072488]
[0.99333831]
[0.00781424]
[0.00584866]
[0.02362064]
[0.01216366]
[0.00683059]
[0.00921785]
[0.00169813]
[0.00730339]]
```python
# Visualize hidden layer activations
#hidden_inputs = hidden_inputs.reshape((20, 10))
plt.imshow(hidden_inputs.T, cmap='hot', aspect='auto')
plt.xlabel('Hidden Node')
plt.ylabel('Sample')
plt.title('Hidden Layer Activations')
plt.colorbar()
plt.show()
```
![png](output_46_0.png)
```python
# Visualize hidden layer activations
plt.imshow(hidden_outputs.T, cmap='hot', aspect='auto')
plt.xlabel('Hidden Node')
plt.ylabel('Sample')
plt.title('Hidden Layer Activations')
plt.colorbar()
plt.show()
```
![png](output_47_0.png)
```python
#可视化中间输出
print(final_inputs.T)
middle_layer_fig = np.asfarray((final_inputs-0.01)/0.99*255.0 )
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
plt.imshow(middle_layer_fig, interpolation = 'nearest')
```
[[-4.52440665 5.00469803 -4.84396237 -5.13567656 -3.72173031 -4.39706459
-4.97949043 -4.67735268 -6.37652596 -4.91208681]]
<matplotlib.image.AxesImage at 0x7fa3cbe083a0>
![png](output_48_2.png)
```python
# Or visualize final outputs as a heatmap
plt.imshow(final_inputs, cmap='hot', aspect='auto')
plt.xlabel('Input Node')
plt.ylabel('Sample')
plt.title('Final Inputs')
plt.colorbar()
plt.show()
```
![png](output_49_0.png)
```python
# Visualize final layer inputs
plt.bar(range(out_nodes), final_inputs.flatten())
plt.xlabel('Output Node')
plt.ylabel('Input Value')
plt.title('Final Layer Inputs')
plt.show()
```
![png](output_50_0.png)
```python
#可视化中间输出
print(final_outputs.T)
middle_layer_fig = np.asfarray((final_outputs-0.01)/0.99*255.0 )
middle_layer_fig = np.asfarray(middle_layer_fig).reshape((1,10))
plt.imshow(middle_layer_fig, interpolation = 'nearest')
```
[[0.01072488 0.99333831 0.00781424 0.00584866 0.02362064 0.01216366
0.00683059 0.00921785 0.00169813 0.00730339]]
<matplotlib.image.AxesImage at 0x7fa3cbcba550>
![png](output_51_2.png)
```python
# Or visualize final outputs as a heatmap
plt.imshow(final_outputs, cmap='hot', aspect='auto')
plt.xlabel('Output Node')
plt.ylabel('Sample')
plt.title('Final Outputs')
plt.colorbar()
plt.show()
```
![png](output_52_0.png)
```python
# Visualize final layer outputs (sigmoid)
plt.bar(range(out_nodes), final_outputs.flatten())
plt.xlabel('Output Node')
plt.ylabel('Input Value')
plt.title('Final Layer Outputs')
plt.show()
```
![png](output_53_0.png)
```python
lebal = np.argmax(final_outputs)
print(lebal)
```
1
```python
#模型效果和性能测试
```
```python
# load the mnist test data CSV file into a list
# 导入测试集数据
test_data_file = open("mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
# test the neural network
# 用query函数对测试集进行检测
# go through all the records in the test data set for record in the test_data_list:
scorecard = 0 # 得分卡,检测对一个加一分
# 计算测试集上的误差
for record in test_data_list:
# split the record by the ',' comas
# 将所有测试数据通过逗号分隔开
all_values = record.split(',')
# correct answer is first value
# 正确值为每一条测试数据的第一个数值
correct_lebal = int(all_values[0])
#print("correct lebal", correct_lebal) # 将正确的数值在屏幕上打印出来
# scale and shift the inputs
# 对输入数据进行处理,取后784个数据除以255,再乘以0.99,最后加上0。01,是所有的数据都在0.01到1.00之间
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 #输入层,784个输入
# query the network
# 用query函数对测试集进行检测
test_inputs = np.array(inputs, ndmin = 2).T
# 以下程序为计算输出结果的程序,与上面前向传播算法一致
hidden_inputs = np.dot(final_wih, test_inputs)
hidden_outputs = activation_function(hidden_inputs)
final_inputs = np.dot(final_who, hidden_outputs)
final_outputs = activation_function(final_inputs)
# the index of the highest value corresponds to out label
# 得到的数字就是输出结果的最大的数值所对应的标签
lebal = np.argmax(final_outputs) # argmax()函数用于找出数值最大的值所对应的标签
#print("Output is ", lebal) # 在屏幕上打出最终输出的结果
# output image of every digit
# 输出每一个数字的图片
#image_correct = np.asfarray(all_values[1:]).reshape((28, 28))
#plt.imshow(image_correct, cmap = 'Greys', interpolation = 'None')
#plt.show()
# append correct or incorrect to list
if (lebal == correct_lebal):
# network's answer matchs correct answer, add 1 to scorecard
scorecard += 1
else:
# network's answer doesn't match correct answer, add 0 to scorecard
scorecard += 0
pass
pass
# calculate the performance score, the fraction
# 计算准确率 得分卡最后的数值/10000(测试集总个数)
print("performance = ", scorecard / 10000)
```
performance = 0.9722
|