|
--- |
|
language: en |
|
thumbnail: |
|
tags: |
|
- bert |
|
- embeddings |
|
license: Apache-2.0 |
|
--- |
|
|
|
# LABSE BERT |
|
|
|
## Model description |
|
|
|
Model for "Language-agnostic BERT Sentence Embedding" paper from Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, Wei Wang. Model available in [TensorFlow Hub](https://tfhub.dev/google/LaBSE/1). |
|
|
|
## Intended uses & limitations |
|
|
|
#### How to use |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
# from sentence-transformers |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) |
|
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
return sum_embeddings / sum_mask |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("pvl/labse_bert", do_lower_case=False) |
|
model = AutoModel.from_pretrained("pvl/labse_bert") |
|
|
|
sentences = ['This framework generates embeddings for each input sentence', |
|
'Sentences are passed as a list of string.', |
|
'The quick brown fox jumps over the lazy dog.'] |
|
|
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') |
|
|
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
|
|
``` |
|
|