Whisper-Small-En / README.md
qaihm-bot's picture
Upload README.md with huggingface_hub
1a4bda1 verified
metadata
library_name: pytorch
license: mit
pipeline_tag: automatic-speech-recognition
tags:
  - foundation
  - android

Whisper-Small-En: Optimized for Mobile Deployment

Automatic speech recognition (ASR) model for English transcription as well as translation

OpenAI’s Whisper ASR (Automatic Speech Recognition) model is a state-of-the-art system designed for transcribing spoken language into written text. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a mean decoded length specified below.

This model is an implementation of Whisper-Small-En found here.

This repository provides scripts to run Whisper-Small-En on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Speech recognition
  • Model Stats:
    • Model checkpoint: small.en
    • Input resolution: 80x3000 (30 seconds audio)
    • Mean decoded sequence length: 112 tokens
    • Number of parameters (WhisperEncoder): 102M
    • Model size (WhisperEncoder): 390 MB
    • Number of parameters (WhisperDecoder): 139M
    • Model size (WhisperDecoder): 531 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
WhisperDecoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 28.431 ms 16 - 101 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 61.376 ms 41 - 728 MB FP16 NPU Whisper-Small-En.onnx
WhisperDecoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 24.241 ms 28 - 162 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 48.975 ms 0 - 306 MB FP16 NPU Whisper-Small-En.onnx
WhisperDecoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 21.333 ms 15 - 177 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 43.862 ms 55 - 376 MB FP16 NPU Whisper-Small-En.onnx
WhisperDecoder QCS8550 (Proxy) QCS8550 Proxy TFLITE 29.124 ms 16 - 96 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder SA7255P ADP SA7255P TFLITE 101.345 ms 16 - 175 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder SA8255 (Proxy) SA8255P Proxy TFLITE 28.596 ms 16 - 101 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder SA8295P ADP SA8295P TFLITE 31.234 ms 16 - 164 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder SA8650 (Proxy) SA8650P Proxy TFLITE 28.404 ms 16 - 101 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder SA8775P ADP SA8775P TFLITE 33.076 ms 16 - 175 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder QCS8450 (Proxy) QCS8450 Proxy TFLITE 31.696 ms 16 - 142 MB FP16 NPU Whisper-Small-En.tflite
WhisperDecoder Snapdragon X Elite CRD Snapdragon® X Elite ONNX 51.962 ms 231 - 231 MB FP16 NPU Whisper-Small-En.onnx
WhisperEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 810.289 ms 110 - 176 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 1121.013 ms 35 - 246 MB FP16 NPU Whisper-Small-En.onnx
WhisperEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 528.927 ms 110 - 206 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 851.638 ms 156 - 1585 MB FP16 NPU Whisper-Small-En.onnx
WhisperEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 543.701 ms 109 - 140 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 674.597 ms 122 - 1558 MB FP16 NPU Whisper-Small-En.onnx
WhisperEncoder QCS8550 (Proxy) QCS8550 Proxy TFLITE 969.98 ms 30 - 150 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder SA7255P ADP SA7255P TFLITE 4475.179 ms 98 - 131 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder SA8255 (Proxy) SA8255P Proxy TFLITE 1250.866 ms 18 - 136 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder SA8295P ADP SA8295P TFLITE 657.219 ms 109 - 140 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder SA8650 (Proxy) SA8650P Proxy TFLITE 684.483 ms 18 - 157 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder SA8775P ADP SA8775P TFLITE 1292.109 ms 103 - 135 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder QCS8450 (Proxy) QCS8450 Proxy TFLITE 1615.849 ms 74 - 174 MB FP16 GPU Whisper-Small-En.tflite
WhisperEncoder Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1341.576 ms 237 - 237 MB FP16 NPU Whisper-Small-En.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[whisper-small-en]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.whisper_small_en.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.whisper_small_en.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.whisper_small_en.export
Profiling Results
------------------------------------------------------------
WhisperDecoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 28.4                   
Estimated peak memory usage (MB): [16, 101]              
Total # Ops                     : 2573                   
Compute Unit(s)                 : NPU (2573 ops)         

------------------------------------------------------------
WhisperEncoder
Device                          : Samsung Galaxy S23 (13)   
Runtime                         : TFLITE                    
Estimated inference time (ms)   : 810.3                     
Estimated peak memory usage (MB): [110, 176]                
Total # Ops                     : 911                       
Compute Unit(s)                 : GPU (900 ops) CPU (11 ops)

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.whisper_small_en import Model

# Load the model
model = Model.from_pretrained()
decoder_model = model.decoder
encoder_model = model.encoder

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
decoder_input_shape = decoder_model.get_input_spec()
decoder_sample_inputs = decoder_model.sample_inputs()

traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()])

# Compile model on a specific device
decoder_compile_job = hub.submit_compile_job(
    model=traced_decoder_model ,
    device=device,
    input_specs=decoder_model.get_input_spec(),
)

# Get target model to run on-device
decoder_target_model = decoder_compile_job.get_target_model()
# Trace model
encoder_input_shape = encoder_model.get_input_spec()
encoder_sample_inputs = encoder_model.sample_inputs()

traced_encoder_model = torch.jit.trace(encoder_model, [torch.tensor(data[0]) for _, data in encoder_sample_inputs.items()])

# Compile model on a specific device
encoder_compile_job = hub.submit_compile_job(
    model=traced_encoder_model ,
    device=device,
    input_specs=encoder_model.get_input_spec(),
)

# Get target model to run on-device
encoder_target_model = encoder_compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

decoder_profile_job = hub.submit_profile_job(
    model=decoder_target_model,
    device=device,
)
encoder_profile_job = hub.submit_profile_job(
    model=encoder_target_model,
    device=device,
)

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

decoder_input_data = decoder_model.sample_inputs()
decoder_inference_job = hub.submit_inference_job(
    model=decoder_target_model,
    device=device,
    inputs=decoder_input_data,
)
decoder_inference_job.download_output_data()
encoder_input_data = encoder_model.sample_inputs()
encoder_inference_job = hub.submit_inference_job(
    model=encoder_target_model,
    device=device,
    inputs=encoder_input_data,
)
encoder_inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Whisper-Small-En's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Whisper-Small-En can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community