Yolo-NAS: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge

YoloNAS is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of Yolo-NAS found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YoloNAS Small
    • Input resolution: 640x640
    • Number of parameters: 12.2M
    • Model size: 46.6 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
Yolo-NAS Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 8.977 ms 0 - 23 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 9.581 ms 5 - 19 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 7.756 ms 1 - 69 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 6.107 ms 0 - 35 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 6.51 ms 5 - 38 MB FP16 NPU --
Yolo-NAS Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 5.307 ms 5 - 53 MB FP16 NPU --
Yolo-NAS Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 6.262 ms 0 - 37 MB FP16 NPU --
Yolo-NAS Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 6.295 ms 5 - 36 MB FP16 NPU --
Yolo-NAS Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 5.359 ms 7 - 45 MB FP16 NPU --
Yolo-NAS QCS8550 (Proxy) QCS8550 Proxy TFLITE 8.97 ms 0 - 26 MB FP16 NPU --
Yolo-NAS QCS8550 (Proxy) QCS8550 Proxy QNN 9.388 ms 5 - 8 MB FP16 NPU --
Yolo-NAS SA7255P ADP SA7255P TFLITE 223.027 ms 0 - 34 MB FP16 NPU --
Yolo-NAS SA7255P ADP SA7255P QNN 223.789 ms 3 - 12 MB FP16 NPU --
Yolo-NAS SA8255 (Proxy) SA8255P Proxy TFLITE 8.978 ms 0 - 22 MB FP16 NPU --
Yolo-NAS SA8255 (Proxy) SA8255P Proxy QNN 9.359 ms 5 - 8 MB FP16 NPU --
Yolo-NAS SA8295P ADP SA8295P TFLITE 14.131 ms 0 - 36 MB FP16 NPU --
Yolo-NAS SA8295P ADP SA8295P QNN 14.5 ms 0 - 14 MB FP16 NPU --
Yolo-NAS SA8650 (Proxy) SA8650P Proxy TFLITE 9.011 ms 0 - 22 MB FP16 NPU --
Yolo-NAS SA8650 (Proxy) SA8650P Proxy QNN 9.487 ms 5 - 7 MB FP16 NPU --
Yolo-NAS SA8775P ADP SA8775P TFLITE 15.663 ms 0 - 33 MB FP16 NPU --
Yolo-NAS SA8775P ADP SA8775P QNN 16.333 ms 1 - 11 MB FP16 NPU --
Yolo-NAS QCS8450 (Proxy) QCS8450 Proxy TFLITE 12.396 ms 0 - 37 MB FP16 NPU --
Yolo-NAS QCS8450 (Proxy) QCS8450 Proxy QNN 13.092 ms 5 - 38 MB FP16 NPU --
Yolo-NAS Snapdragon X Elite CRD Snapdragon® X Elite QNN 10.297 ms 5 - 5 MB FP16 NPU --
Yolo-NAS Snapdragon X Elite CRD Snapdragon® X Elite ONNX 8.5 ms 22 - 22 MB FP16 NPU --

License

  • The license for the original implementation of Yolo-NAS can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support pytorch models for this pipeline type.